Properties

Label 117.10.i
Level $117$
Weight $10$
Character orbit 117.i
Rep. character $\chi_{117}(8,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $84$
Newform subspaces $1$
Sturm bound $140$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.i (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(140\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(117, [\chi])\).

Total New Old
Modular forms 260 84 176
Cusp forms 244 84 160
Eisenstein series 16 0 16

Trace form

\( 84 q - 3648 q^{7} + 2916 q^{13} - 4190448 q^{16} + 1316544 q^{19} + 1517616 q^{22} + 7370184 q^{28} + 14352960 q^{31} - 47891880 q^{34} - 25672020 q^{37} + 250007616 q^{40} + 213738984 q^{46} - 5535744 q^{52}+ \cdots + 3652225284 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(117, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
117.10.i.a 117.i 39.f $84$ $60.259$ None 117.10.i.a \(0\) \(0\) \(0\) \(-3648\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{10}^{\mathrm{old}}(117, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)