Properties

Label 117.2.b
Level 117117
Weight 22
Character orbit 117.b
Rep. character χ117(64,)\chi_{117}(64,\cdot)
Character field Q\Q
Dimension 66
Newform subspaces 22
Sturm bound 2828
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 117=3213 117 = 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 117.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 2828
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(117,[χ])M_{2}(117, [\chi]).

Total New Old
Modular forms 18 8 10
Cusp forms 10 6 4
Eisenstein series 8 2 6

Trace form

6q10q44q102q1312q14+26q16+12q1716q2210q25+12q2612q29+12q38+52q4024q43+18q4950q5212q53+32q55++8q94+O(q100) 6 q - 10 q^{4} - 4 q^{10} - 2 q^{13} - 12 q^{14} + 26 q^{16} + 12 q^{17} - 16 q^{22} - 10 q^{25} + 12 q^{26} - 12 q^{29} + 12 q^{38} + 52 q^{40} - 24 q^{43} + 18 q^{49} - 50 q^{52} - 12 q^{53} + 32 q^{55}+ \cdots + 8 q^{94}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(117,[χ])S_{2}^{\mathrm{new}}(117, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
117.2.b.a 117.b 13.b 22 0.9340.934 Q(3)\Q(\sqrt{-3}) None 39.2.b.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβq2q42βq7βq8+2βq11+q-\beta q^{2}-q^{4}-2\beta q^{7}-\beta q^{8}+2\beta q^{11}+\cdots
117.2.b.b 117.b 13.b 44 0.9340.934 4.0.8112.1 Q(39)\Q(\sqrt{-39}) 117.2.b.b 00 00 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] qβ2q2+(2β3)q4β1q5+(β1+)q8+q-\beta _{2}q^{2}+(-2-\beta _{3})q^{4}-\beta _{1}q^{5}+(\beta _{1}+\cdots)q^{8}+\cdots

Decomposition of S2old(117,[χ])S_{2}^{\mathrm{old}}(117, [\chi]) into lower level spaces

S2old(117,[χ]) S_{2}^{\mathrm{old}}(117, [\chi]) \simeq S2new(39,[χ])S_{2}^{\mathrm{new}}(39, [\chi])2^{\oplus 2}