Defining parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(117, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 8 | 10 |
Cusp forms | 10 | 6 | 4 |
Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(117, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
117.2.b.a | $2$ | $0.934$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta q^{2}-q^{4}-2\beta q^{7}-\beta q^{8}+2\beta q^{11}+\cdots\) |
117.2.b.b | $4$ | $0.934$ | 4.0.8112.1 | \(\Q(\sqrt{-39}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}+(-2-\beta _{3})q^{4}-\beta _{1}q^{5}+(\beta _{1}+\cdots)q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(117, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)