Properties

Label 117.3.w
Level 117117
Weight 33
Character orbit 117.w
Rep. character χ117(58,)\chi_{117}(58,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 104104
Newform subspaces 11
Sturm bound 4242
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 117=3213 117 = 3^{2} \cdot 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 117.w (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 117 117
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 1 1
Sturm bound: 4242
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M3(117,[χ])M_{3}(117, [\chi]).

Total New Old
Modular forms 120 120 0
Cusp forms 104 104 0
Eisenstein series 16 16 0

Trace form

104q2q22q32q532q6+18q82q912q10+22q11+54q122q134q14+70q15324q1612q1786q1836q19+134q2032q21++940q99+O(q100) 104 q - 2 q^{2} - 2 q^{3} - 2 q^{5} - 32 q^{6} + 18 q^{8} - 2 q^{9} - 12 q^{10} + 22 q^{11} + 54 q^{12} - 2 q^{13} - 4 q^{14} + 70 q^{15} - 324 q^{16} - 12 q^{17} - 86 q^{18} - 36 q^{19} + 134 q^{20} - 32 q^{21}+ \cdots + 940 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(117,[χ])S_{3}^{\mathrm{new}}(117, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
117.3.w.a 117.w 117.w 104104 3.1883.188 None 117.3.w.a 2-2 2-2 2-2 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}]