Properties

Label 117.6.a
Level $117$
Weight $6$
Character orbit 117.a
Rep. character $\chi_{117}(1,\cdot)$
Character field $\Q$
Dimension $25$
Newform subspaces $8$
Sturm bound $84$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(84\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(117))\).

Total New Old
Modular forms 74 25 49
Cusp forms 66 25 41
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(8\)
\(-\)\(-\)\(+\)\(7\)
Plus space\(+\)\(11\)
Minus space\(-\)\(14\)

Trace form

\( 25 q - 6 q^{2} + 358 q^{4} + 30 q^{5} + 56 q^{7} + 168 q^{8} - 222 q^{10} - 1704 q^{11} + 169 q^{13} + 882 q^{14} + 5530 q^{16} + 2358 q^{17} + 4556 q^{19} + 2712 q^{20} - 2688 q^{22} - 4872 q^{23} + 19675 q^{25}+ \cdots - 461094 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(117))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 13
117.6.a.a 117.a 1.a $1$ $18.765$ \(\Q\) None 39.6.a.a \(-2\) \(0\) \(74\) \(-112\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-28q^{4}+74q^{5}-112q^{7}+\cdots\)
117.6.a.b 117.a 1.a $2$ $18.765$ \(\Q(\sqrt{14}) \) None 39.6.a.b \(4\) \(0\) \(48\) \(72\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{2}+(28+4\beta )q^{4}+(24-5\beta )q^{5}+\cdots\)
117.6.a.c 117.a 1.a $2$ $18.765$ \(\Q(\sqrt{17}) \) None 13.6.a.a \(5\) \(0\) \(42\) \(-36\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta )q^{2}+(-19-5\beta )q^{4}+(41-40\beta )q^{5}+\cdots\)
117.6.a.d 117.a 1.a $3$ $18.765$ 3.3.168897.1 None 13.6.a.b \(-7\) \(0\) \(-56\) \(-60\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{2}+(40+\beta _{1}+4\beta _{2})q^{4}+\cdots\)
117.6.a.e 117.a 1.a $3$ $18.765$ 3.3.125308.1 None 39.6.a.c \(0\) \(0\) \(-54\) \(84\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(5+2\beta _{1}+\beta _{2})q^{4}+(-18+\cdots)q^{5}+\cdots\)
117.6.a.f 117.a 1.a $4$ $18.765$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 39.6.a.d \(-6\) \(0\) \(-24\) \(72\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{2}+(33-3\beta _{1}+2\beta _{2}+\cdots)q^{4}+\cdots\)
117.6.a.g 117.a 1.a $4$ $18.765$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 117.6.a.g \(0\) \(0\) \(0\) \(-288\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(15+\beta _{3})q^{4}+(-4\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
117.6.a.h 117.a 1.a $6$ $18.765$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 117.6.a.h \(0\) \(0\) \(0\) \(324\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(6+\beta _{2})q^{4}+\beta _{3}q^{5}+(54+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(117))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(117)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)