Properties

Label 1170.2.w
Level 11701170
Weight 22
Character orbit 1170.w
Rep. character χ1170(307,)\chi_{1170}(307,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 7070
Newform subspaces 99
Sturm bound 504504
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1170=232513 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1170.w (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 65 65
Character field: Q(i)\Q(i)
Newform subspaces: 9 9
Sturm bound: 504504
Trace bound: 55
Distinguishing TpT_p: 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(1170,[χ])M_{2}(1170, [\chi]).

Total New Old
Modular forms 536 70 466
Cusp forms 472 70 402
Eisenstein series 64 0 64

Trace form

70q70q4+2q5+4q11+6q13+70q162q1720q192q208q236q25+24q31+18q3412q35+24q37+10q41+8q434q44+4q46++24q95+O(q100) 70 q - 70 q^{4} + 2 q^{5} + 4 q^{11} + 6 q^{13} + 70 q^{16} - 2 q^{17} - 20 q^{19} - 2 q^{20} - 8 q^{23} - 6 q^{25} + 24 q^{31} + 18 q^{34} - 12 q^{35} + 24 q^{37} + 10 q^{41} + 8 q^{43} - 4 q^{44} + 4 q^{46}+ \cdots + 24 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1170,[χ])S_{2}^{\mathrm{new}}(1170, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1170.2.w.a 1170.w 65.f 22 9.3429.342 Q(1)\Q(\sqrt{-1}) None 130.2.g.b 00 00 4-4 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+iq2q4+(i2)q52q7+q+i q^{2}-q^{4}+(i-2)q^{5}-2 q^{7}+\cdots
1170.2.w.b 1170.w 65.f 22 9.3429.342 Q(1)\Q(\sqrt{-1}) None 130.2.g.a 00 00 22 8-8 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+iq2q4+(2i+1)q54q7+q+i q^{2}-q^{4}+(2 i+1)q^{5}-4 q^{7}+\cdots
1170.2.w.c 1170.w 65.f 22 9.3429.342 Q(1)\Q(\sqrt{-1}) None 130.2.g.c 00 00 44 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qiq2q4+(i+2)q52q7+q-i q^{2}-q^{4}+(-i+2)q^{5}-2 q^{7}+\cdots
1170.2.w.d 1170.w 65.f 44 9.3429.342 Q(ζ12)\Q(\zeta_{12}) None 130.2.g.e 00 00 4-4 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qζ123q2q4+(2+ζ12+2ζ122+)q5+q-\zeta_{12}^{3}q^{2}-q^{4}+(-2+\zeta_{12}+2\zeta_{12}^{2}+\cdots)q^{5}+\cdots
1170.2.w.e 1170.w 65.f 44 9.3429.342 Q(i,11)\Q(i, \sqrt{11}) None 130.2.g.d 00 00 00 1212 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ2q2q4+(β1+2β2)q5+3q7+q-\beta _{2}q^{2}-q^{4}+(-\beta _{1}+2\beta _{2})q^{5}+3q^{7}+\cdots
1170.2.w.f 1170.w 65.f 1212 9.3429.342 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 390.2.j.a 00 00 44 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ4q2q4+β9q5+(β2β5+β7+)q7+q-\beta _{4}q^{2}-q^{4}+\beta _{9}q^{5}+(\beta _{2}-\beta _{5}+\beta _{7}+\cdots)q^{7}+\cdots
1170.2.w.g 1170.w 65.f 1414 9.3429.342 Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots) None 1170.2.m.g 00 00 2-2 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ3q2q4+β11q5β4q7+β3q8+q-\beta _{3}q^{2}-q^{4}+\beta _{11}q^{5}-\beta _{4}q^{7}+\beta _{3}q^{8}+\cdots
1170.2.w.h 1170.w 65.f 1414 9.3429.342 Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots) None 1170.2.m.g 00 00 22 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β3q2q4β11q5β4q7β3q8+q+\beta _{3}q^{2}-q^{4}-\beta _{11}q^{5}-\beta _{4}q^{7}-\beta _{3}q^{8}+\cdots
1170.2.w.i 1170.w 65.f 1616 9.3429.342 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 390.2.j.b 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ6q2q4β9q5+(β1β8β9+)q7+q-\beta _{6}q^{2}-q^{4}-\beta _{9}q^{5}+(\beta _{1}-\beta _{8}-\beta _{9}+\cdots)q^{7}+\cdots

Decomposition of S2old(1170,[χ])S_{2}^{\mathrm{old}}(1170, [\chi]) into lower level spaces

S2old(1170,[χ]) S_{2}^{\mathrm{old}}(1170, [\chi]) \simeq S2new(65,[χ])S_{2}^{\mathrm{new}}(65, [\chi])6^{\oplus 6}\oplusS2new(130,[χ])S_{2}^{\mathrm{new}}(130, [\chi])3^{\oplus 3}\oplusS2new(195,[χ])S_{2}^{\mathrm{new}}(195, [\chi])4^{\oplus 4}\oplusS2new(390,[χ])S_{2}^{\mathrm{new}}(390, [\chi])2^{\oplus 2}\oplusS2new(585,[χ])S_{2}^{\mathrm{new}}(585, [\chi])2^{\oplus 2}