Properties

Label 1183.2.bb
Level 11831183
Weight 22
Character orbit 1183.bb
Rep. character χ1183(437,)\chi_{1183}(437,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 368368
Sturm bound 242242

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1183=7132 1183 = 7 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1183.bb (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 91 91
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 242242

Dimensions

The following table gives the dimensions of various subspaces of M2(1183,[χ])M_{2}(1183, [\chi]).

Total New Old
Modular forms 544 448 96
Cusp forms 432 368 64
Eisenstein series 112 80 32

Trace form

368q+2q2+12q3+6q5+6q7+16q8+144q9+10q1180q14+44q15+116q16+4q1812q19+26q21+12q24+6q2832q2924q314q32++24q99+O(q100) 368 q + 2 q^{2} + 12 q^{3} + 6 q^{5} + 6 q^{7} + 16 q^{8} + 144 q^{9} + 10 q^{11} - 80 q^{14} + 44 q^{15} + 116 q^{16} + 4 q^{18} - 12 q^{19} + 26 q^{21} + 12 q^{24} + 6 q^{28} - 32 q^{29} - 24 q^{31} - 4 q^{32}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1183,[χ])S_{2}^{\mathrm{new}}(1183, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1183,[χ])S_{2}^{\mathrm{old}}(1183, [\chi]) into lower level spaces

S2old(1183,[χ]) S_{2}^{\mathrm{old}}(1183, [\chi]) \simeq S2new(91,[χ])S_{2}^{\mathrm{new}}(91, [\chi])2^{\oplus 2}