Properties

Label 1183.2.k
Level $1183$
Weight $2$
Character orbit 1183.k
Rep. character $\chi_{1183}(23,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $186$
Sturm bound $242$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(242\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1183, [\chi])\).

Total New Old
Modular forms 270 226 44
Cusp forms 214 186 28
Eisenstein series 56 40 16

Trace form

\( 186 q + 2 q^{3} - 166 q^{4} + 6 q^{6} + 7 q^{7} - 77 q^{9} - 9 q^{10} - 3 q^{11} + 2 q^{12} - 36 q^{14} + 9 q^{15} + 122 q^{16} + 26 q^{17} + 3 q^{18} - 6 q^{19} + 6 q^{20} - 16 q^{21} + 8 q^{22} + 2 q^{23}+ \cdots + 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1183, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1183, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1183, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)