Properties

Label 1183.2.k
Level 11831183
Weight 22
Character orbit 1183.k
Rep. character χ1183(23,)\chi_{1183}(23,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 186186
Sturm bound 242242

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1183=7132 1183 = 7 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1183.k (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 91 91
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 242242

Dimensions

The following table gives the dimensions of various subspaces of M2(1183,[χ])M_{2}(1183, [\chi]).

Total New Old
Modular forms 270 226 44
Cusp forms 214 186 28
Eisenstein series 56 40 16

Trace form

186q+2q3166q4+6q6+7q777q99q103q11+2q1236q14+9q15+122q16+26q17+3q186q19+6q2016q21+8q22+2q23++42q98+O(q100) 186 q + 2 q^{3} - 166 q^{4} + 6 q^{6} + 7 q^{7} - 77 q^{9} - 9 q^{10} - 3 q^{11} + 2 q^{12} - 36 q^{14} + 9 q^{15} + 122 q^{16} + 26 q^{17} + 3 q^{18} - 6 q^{19} + 6 q^{20} - 16 q^{21} + 8 q^{22} + 2 q^{23}+ \cdots + 42 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1183,[χ])S_{2}^{\mathrm{new}}(1183, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1183,[χ])S_{2}^{\mathrm{old}}(1183, [\chi]) into lower level spaces

S2old(1183,[χ]) S_{2}^{\mathrm{old}}(1183, [\chi]) \simeq S2new(91,[χ])S_{2}^{\mathrm{new}}(91, [\chi])2^{\oplus 2}