Properties

Label 1183.2.r
Level 11831183
Weight 22
Character orbit 1183.r
Rep. character χ1183(506,)\chi_{1183}(506,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 184184
Sturm bound 242242

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1183=7132 1183 = 7 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1183.r (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 91 91
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 242242

Dimensions

The following table gives the dimensions of various subspaces of M2(1183,[χ])M_{2}(1183, [\chi]).

Total New Old
Modular forms 272 224 48
Cusp forms 216 184 32
Eisenstein series 56 40 16

Trace form

184q+4q3+82q464q9+6q1018q1266q1610q17+32q22+14q23+54q2592q27+16q2920q30+12q354q3646q388q40++18q95+O(q100) 184 q + 4 q^{3} + 82 q^{4} - 64 q^{9} + 6 q^{10} - 18 q^{12} - 66 q^{16} - 10 q^{17} + 32 q^{22} + 14 q^{23} + 54 q^{25} - 92 q^{27} + 16 q^{29} - 20 q^{30} + 12 q^{35} - 4 q^{36} - 46 q^{38} - 8 q^{40}+ \cdots + 18 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1183,[χ])S_{2}^{\mathrm{new}}(1183, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1183,[χ])S_{2}^{\mathrm{old}}(1183, [\chi]) into lower level spaces

S2old(1183,[χ]) S_{2}^{\mathrm{old}}(1183, [\chi]) \simeq S2new(91,[χ])S_{2}^{\mathrm{new}}(91, [\chi])2^{\oplus 2}