Properties

Label 120.3.u
Level 120120
Weight 33
Character orbit 120.u
Rep. character χ120(73,)\chi_{120}(73,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 1212
Newform subspaces 22
Sturm bound 7272
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 120=2335 120 = 2^{3} \cdot 3 \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 120.u (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q(i)\Q(i)
Newform subspaces: 2 2
Sturm bound: 7272
Trace bound: 11
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M3(120,[χ])M_{3}(120, [\chi]).

Total New Old
Modular forms 112 12 100
Cusp forms 80 12 68
Eisenstein series 32 0 32

Trace form

12q8q58q7+16q11+44q13+24q15+28q1796q2368q25+16q31+72q33+52q37208q4196q4336q4532q4712q53+136q55+356q97+O(q100) 12 q - 8 q^{5} - 8 q^{7} + 16 q^{11} + 44 q^{13} + 24 q^{15} + 28 q^{17} - 96 q^{23} - 68 q^{25} + 16 q^{31} + 72 q^{33} + 52 q^{37} - 208 q^{41} - 96 q^{43} - 36 q^{45} - 32 q^{47} - 12 q^{53} + 136 q^{55}+ \cdots - 356 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(120,[χ])S_{3}^{\mathrm{new}}(120, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
120.3.u.a 120.u 5.c 44 3.2703.270 Q(i,6)\Q(i, \sqrt{6}) None 120.3.u.a 00 00 44 12-12 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β1q3+(1+β1+3β22β3)q5+q+\beta _{1}q^{3}+(1+\beta _{1}+3\beta _{2}-2\beta _{3})q^{5}+\cdots
120.3.u.b 120.u 5.c 88 3.2703.270 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 120.3.u.b 00 00 12-12 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ1q3+(2+β1+β6)q5+(β1+)q7+q-\beta _{1}q^{3}+(-2+\beta _{1}+\beta _{6})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots

Decomposition of S3old(120,[χ])S_{3}^{\mathrm{old}}(120, [\chi]) into lower level spaces

S3old(120,[χ]) S_{3}^{\mathrm{old}}(120, [\chi]) \simeq S3new(10,[χ])S_{3}^{\mathrm{new}}(10, [\chi])6^{\oplus 6}\oplusS3new(15,[χ])S_{3}^{\mathrm{new}}(15, [\chi])4^{\oplus 4}\oplusS3new(20,[χ])S_{3}^{\mathrm{new}}(20, [\chi])4^{\oplus 4}\oplusS3new(30,[χ])S_{3}^{\mathrm{new}}(30, [\chi])3^{\oplus 3}\oplusS3new(40,[χ])S_{3}^{\mathrm{new}}(40, [\chi])2^{\oplus 2}\oplusS3new(60,[χ])S_{3}^{\mathrm{new}}(60, [\chi])2^{\oplus 2}