Defining parameters
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.u (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(120, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 12 | 100 |
Cusp forms | 80 | 12 | 68 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(120, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
120.3.u.a | $4$ | $3.270$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(0\) | \(4\) | \(-12\) | \(q+\beta _{1}q^{3}+(1+\beta _{1}+3\beta _{2}-2\beta _{3})q^{5}+\cdots\) |
120.3.u.b | $8$ | $3.270$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(-12\) | \(4\) | \(q-\beta _{1}q^{3}+(-2+\beta _{1}+\beta _{6})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(120, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(120, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)