Properties

Label 120.4.m.b.59.14
Level $120$
Weight $4$
Character 120.59
Analytic conductor $7.080$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(59,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.59");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.14
Character \(\chi\) \(=\) 120.59
Dual form 120.4.m.b.59.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.12434 - 1.86740i) q^{2} +(0.659128 + 5.15418i) q^{3} +(1.02565 + 7.93398i) q^{4} +(-10.6502 - 3.40199i) q^{5} +(8.22469 - 12.1801i) q^{6} +28.2468 q^{7} +(12.6371 - 18.7698i) q^{8} +(-26.1311 + 6.79452i) q^{9} +(16.2718 + 27.1151i) q^{10} +38.5985i q^{11} +(-40.2171 + 10.5159i) q^{12} -36.1882 q^{13} +(-60.0059 - 52.7480i) q^{14} +(10.5146 - 57.1353i) q^{15} +(-61.8961 + 16.2750i) q^{16} -74.9762 q^{17} +(68.1995 + 34.3633i) q^{18} -136.377 q^{19} +(16.0679 - 87.9876i) q^{20} +(18.6183 + 145.589i) q^{21} +(72.0787 - 81.9963i) q^{22} +114.614i q^{23} +(105.072 + 52.7620i) q^{24} +(101.853 + 72.4636i) q^{25} +(76.8760 + 67.5777i) q^{26} +(-52.2439 - 130.206i) q^{27} +(28.9714 + 224.110i) q^{28} -109.327 q^{29} +(-129.031 + 101.740i) q^{30} -57.1138i q^{31} +(161.880 + 81.0110i) q^{32} +(-198.943 + 25.4413i) q^{33} +(159.275 + 140.010i) q^{34} +(-300.834 - 96.0952i) q^{35} +(-80.7090 - 200.355i) q^{36} +100.427 q^{37} +(289.712 + 254.671i) q^{38} +(-23.8526 - 186.520i) q^{39} +(-198.442 + 156.911i) q^{40} +173.978i q^{41} +(232.321 - 344.049i) q^{42} +86.0147i q^{43} +(-306.239 + 39.5886i) q^{44} +(301.416 + 16.5347i) q^{45} +(214.030 - 243.480i) q^{46} -239.821i q^{47} +(-124.682 - 308.296i) q^{48} +454.882 q^{49} +(-81.0522 - 344.137i) q^{50} +(-49.4189 - 386.440i) q^{51} +(-37.1165 - 287.116i) q^{52} -476.921i q^{53} +(-132.162 + 374.162i) q^{54} +(131.311 - 411.081i) q^{55} +(356.957 - 530.186i) q^{56} +(-89.8901 - 702.913i) q^{57} +(232.247 + 204.156i) q^{58} +762.283i q^{59} +(464.095 + 24.8218i) q^{60} +614.842i q^{61} +(-106.654 + 121.329i) q^{62} +(-738.120 + 191.924i) q^{63} +(-192.609 - 474.390i) q^{64} +(385.411 + 123.112i) q^{65} +(470.132 + 317.460i) q^{66} +382.405i q^{67} +(-76.8994 - 594.859i) q^{68} +(-590.742 + 75.5455i) q^{69} +(459.626 + 765.915i) q^{70} -124.611 q^{71} +(-202.689 + 576.338i) q^{72} -267.766i q^{73} +(-213.342 - 187.538i) q^{74} +(-306.356 + 572.731i) q^{75} +(-139.876 - 1082.01i) q^{76} +1090.28i q^{77} +(-297.636 + 440.775i) q^{78} -586.207i q^{79} +(714.572 + 37.2378i) q^{80} +(636.669 - 355.097i) q^{81} +(324.885 - 369.588i) q^{82} +282.399 q^{83} +(-1136.00 + 297.040i) q^{84} +(798.510 + 255.068i) q^{85} +(160.624 - 182.724i) q^{86} +(-72.0602 - 563.489i) q^{87} +(724.484 + 487.771i) q^{88} +604.782i q^{89} +(-609.434 - 597.989i) q^{90} -1022.20 q^{91} +(-909.347 + 117.554i) q^{92} +(294.375 - 37.6453i) q^{93} +(-447.841 + 509.461i) q^{94} +(1452.44 + 463.954i) q^{95} +(-310.845 + 887.756i) q^{96} +1041.15i q^{97} +(-966.325 - 849.446i) q^{98} +(-262.258 - 1008.62i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9} - 72 q^{10} - 128 q^{16} + 672 q^{19} - 416 q^{24} + 496 q^{25} - 248 q^{30} + 240 q^{34} - 608 q^{36} - 1344 q^{40} + 336 q^{46} + 3520 q^{49} - 544 q^{51} - 952 q^{54}+ \cdots + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12434 1.86740i −0.751068 0.660225i
\(3\) 0.659128 + 5.15418i 0.126849 + 0.991922i
\(4\) 1.02565 + 7.93398i 0.128206 + 0.991748i
\(5\) −10.6502 3.40199i −0.952582 0.304283i
\(6\) 8.22469 12.1801i 0.559619 0.828750i
\(7\) 28.2468 1.52518 0.762592 0.646880i \(-0.223926\pi\)
0.762592 + 0.646880i \(0.223926\pi\)
\(8\) 12.6371 18.7698i 0.558485 0.829515i
\(9\) −26.1311 + 6.79452i −0.967819 + 0.251649i
\(10\) 16.2718 + 27.1151i 0.514559 + 0.857455i
\(11\) 38.5985i 1.05799i 0.848625 + 0.528994i \(0.177431\pi\)
−0.848625 + 0.528994i \(0.822569\pi\)
\(12\) −40.2171 + 10.5159i −0.967473 + 0.252973i
\(13\) −36.1882 −0.772061 −0.386031 0.922486i \(-0.626154\pi\)
−0.386031 + 0.922486i \(0.626154\pi\)
\(14\) −60.0059 52.7480i −1.14552 1.00696i
\(15\) 10.5146 57.1353i 0.180991 0.983485i
\(16\) −61.8961 + 16.2750i −0.967126 + 0.254297i
\(17\) −74.9762 −1.06967 −0.534835 0.844957i \(-0.679626\pi\)
−0.534835 + 0.844957i \(0.679626\pi\)
\(18\) 68.1995 + 34.3633i 0.893043 + 0.449972i
\(19\) −136.377 −1.64669 −0.823345 0.567541i \(-0.807895\pi\)
−0.823345 + 0.567541i \(0.807895\pi\)
\(20\) 16.0679 87.9876i 0.179645 0.983732i
\(21\) 18.6183 + 145.589i 0.193468 + 1.51286i
\(22\) 72.0787 81.9963i 0.698510 0.794621i
\(23\) 114.614i 1.03908i 0.854448 + 0.519538i \(0.173896\pi\)
−0.854448 + 0.519538i \(0.826104\pi\)
\(24\) 105.072 + 52.7620i 0.893657 + 0.448750i
\(25\) 101.853 + 72.4636i 0.814824 + 0.579709i
\(26\) 76.8760 + 67.5777i 0.579870 + 0.509734i
\(27\) −52.2439 130.206i −0.372383 0.928079i
\(28\) 28.9714 + 224.110i 0.195538 + 1.51260i
\(29\) −109.327 −0.700050 −0.350025 0.936740i \(-0.613827\pi\)
−0.350025 + 0.936740i \(0.613827\pi\)
\(30\) −129.031 + 101.740i −0.785257 + 0.619170i
\(31\) 57.1138i 0.330901i −0.986218 0.165451i \(-0.947092\pi\)
0.986218 0.165451i \(-0.0529079\pi\)
\(32\) 161.880 + 81.0110i 0.894271 + 0.447527i
\(33\) −198.943 + 25.4413i −1.04944 + 0.134205i
\(34\) 159.275 + 140.010i 0.803395 + 0.706223i
\(35\) −300.834 96.0952i −1.45286 0.464087i
\(36\) −80.7090 200.355i −0.373653 0.927569i
\(37\) 100.427 0.446221 0.223110 0.974793i \(-0.428379\pi\)
0.223110 + 0.974793i \(0.428379\pi\)
\(38\) 289.712 + 254.671i 1.23678 + 1.08719i
\(39\) −23.8526 186.520i −0.0979353 0.765824i
\(40\) −198.442 + 156.911i −0.784409 + 0.620243i
\(41\) 173.978i 0.662701i 0.943508 + 0.331350i \(0.107504\pi\)
−0.943508 + 0.331350i \(0.892496\pi\)
\(42\) 232.321 344.049i 0.853522 1.26400i
\(43\) 86.0147i 0.305049i 0.988300 + 0.152525i \(0.0487403\pi\)
−0.988300 + 0.152525i \(0.951260\pi\)
\(44\) −306.239 + 39.5886i −1.04926 + 0.135641i
\(45\) 301.416 + 16.5347i 0.998499 + 0.0547743i
\(46\) 214.030 243.480i 0.686023 0.780416i
\(47\) 239.821i 0.744286i −0.928175 0.372143i \(-0.878623\pi\)
0.928175 0.372143i \(-0.121377\pi\)
\(48\) −124.682 308.296i −0.374922 0.927056i
\(49\) 454.882 1.32619
\(50\) −81.0522 344.137i −0.229250 0.973368i
\(51\) −49.4189 386.440i −0.135687 1.06103i
\(52\) −37.1165 287.116i −0.0989832 0.765690i
\(53\) 476.921i 1.23604i −0.786162 0.618021i \(-0.787935\pi\)
0.786162 0.618021i \(-0.212065\pi\)
\(54\) −132.162 + 374.162i −0.333056 + 0.942907i
\(55\) 131.311 411.081i 0.321928 1.00782i
\(56\) 356.957 530.186i 0.851792 1.26516i
\(57\) −89.8901 702.913i −0.208881 1.63339i
\(58\) 232.247 + 204.156i 0.525785 + 0.462190i
\(59\) 762.283i 1.68205i 0.540997 + 0.841024i \(0.318047\pi\)
−0.540997 + 0.841024i \(0.681953\pi\)
\(60\) 464.095 + 24.8218i 0.998573 + 0.0534079i
\(61\) 614.842i 1.29053i 0.763958 + 0.645266i \(0.223253\pi\)
−0.763958 + 0.645266i \(0.776747\pi\)
\(62\) −106.654 + 121.329i −0.218469 + 0.248529i
\(63\) −738.120 + 191.924i −1.47610 + 0.383811i
\(64\) −192.609 474.390i −0.376190 0.926543i
\(65\) 385.411 + 123.112i 0.735451 + 0.234925i
\(66\) 470.132 + 317.460i 0.876808 + 0.592070i
\(67\) 382.405i 0.697287i 0.937256 + 0.348643i \(0.113358\pi\)
−0.937256 + 0.348643i \(0.886642\pi\)
\(68\) −76.8994 594.859i −0.137139 1.06084i
\(69\) −590.742 + 75.5455i −1.03068 + 0.131806i
\(70\) 459.626 + 765.915i 0.784797 + 1.30778i
\(71\) −124.611 −0.208291 −0.104145 0.994562i \(-0.533211\pi\)
−0.104145 + 0.994562i \(0.533211\pi\)
\(72\) −202.689 + 576.338i −0.331765 + 0.943362i
\(73\) 267.766i 0.429310i −0.976690 0.214655i \(-0.931137\pi\)
0.976690 0.214655i \(-0.0688627\pi\)
\(74\) −213.342 187.538i −0.335142 0.294606i
\(75\) −306.356 + 572.731i −0.471666 + 0.881777i
\(76\) −139.876 1082.01i −0.211116 1.63310i
\(77\) 1090.28i 1.61363i
\(78\) −297.636 + 440.775i −0.432060 + 0.639846i
\(79\) 586.207i 0.834854i −0.908710 0.417427i \(-0.862932\pi\)
0.908710 0.417427i \(-0.137068\pi\)
\(80\) 714.572 + 37.2378i 0.998645 + 0.0520414i
\(81\) 636.669 355.097i 0.873346 0.487101i
\(82\) 324.885 369.588i 0.437532 0.497733i
\(83\) 282.399 0.373462 0.186731 0.982411i \(-0.440211\pi\)
0.186731 + 0.982411i \(0.440211\pi\)
\(84\) −1136.00 + 297.040i −1.47558 + 0.385831i
\(85\) 798.510 + 255.068i 1.01895 + 0.325482i
\(86\) 160.624 182.724i 0.201401 0.229113i
\(87\) −72.0602 563.489i −0.0888007 0.694395i
\(88\) 724.484 + 487.771i 0.877617 + 0.590870i
\(89\) 604.782i 0.720301i 0.932894 + 0.360151i \(0.117275\pi\)
−0.932894 + 0.360151i \(0.882725\pi\)
\(90\) −609.434 597.989i −0.713777 0.700373i
\(91\) −1022.20 −1.17754
\(92\) −909.347 + 117.554i −1.03050 + 0.133216i
\(93\) 294.375 37.6453i 0.328228 0.0419746i
\(94\) −447.841 + 509.461i −0.491396 + 0.559010i
\(95\) 1452.44 + 463.954i 1.56861 + 0.501059i
\(96\) −310.845 + 887.756i −0.330474 + 0.943815i
\(97\) 1041.15i 1.08982i 0.838494 + 0.544911i \(0.183437\pi\)
−0.838494 + 0.544911i \(0.816563\pi\)
\(98\) −966.325 849.446i −0.996057 0.875581i
\(99\) −262.258 1008.62i −0.266242 1.02394i
\(100\) −470.459 + 882.422i −0.470459 + 0.882422i
\(101\) 512.592 0.504998 0.252499 0.967597i \(-0.418748\pi\)
0.252499 + 0.967597i \(0.418748\pi\)
\(102\) −616.655 + 913.216i −0.598608 + 0.886489i
\(103\) −588.625 −0.563097 −0.281548 0.959547i \(-0.590848\pi\)
−0.281548 + 0.959547i \(0.590848\pi\)
\(104\) −457.312 + 679.244i −0.431184 + 0.640436i
\(105\) 297.004 1613.89i 0.276044 1.50000i
\(106\) −890.602 + 1013.14i −0.816065 + 0.928351i
\(107\) 1877.68 1.69647 0.848233 0.529624i \(-0.177667\pi\)
0.848233 + 0.529624i \(0.177667\pi\)
\(108\) 979.467 548.048i 0.872678 0.488296i
\(109\) 833.606i 0.732523i 0.930512 + 0.366261i \(0.119362\pi\)
−0.930512 + 0.366261i \(0.880638\pi\)
\(110\) −1046.60 + 628.065i −0.907178 + 0.544397i
\(111\) 66.1945 + 517.621i 0.0566028 + 0.442616i
\(112\) −1748.37 + 459.717i −1.47505 + 0.387849i
\(113\) 990.495 0.824583 0.412292 0.911052i \(-0.364729\pi\)
0.412292 + 0.911052i \(0.364729\pi\)
\(114\) −1121.66 + 1661.09i −0.921519 + 1.36469i
\(115\) 389.916 1220.66i 0.316173 0.989804i
\(116\) −112.131 867.395i −0.0897508 0.694272i
\(117\) 945.637 245.881i 0.747215 0.194288i
\(118\) 1423.49 1619.35i 1.11053 1.26333i
\(119\) −2117.84 −1.63144
\(120\) −939.543 919.379i −0.714735 0.699396i
\(121\) −158.840 −0.119339
\(122\) 1148.15 1306.13i 0.852041 0.969277i
\(123\) −896.712 + 114.673i −0.657348 + 0.0840631i
\(124\) 453.140 58.5788i 0.328171 0.0424237i
\(125\) −838.233 1118.25i −0.599791 0.800157i
\(126\) 1926.42 + 970.653i 1.36205 + 0.686291i
\(127\) 1517.02 1.05995 0.529976 0.848013i \(-0.322201\pi\)
0.529976 + 0.848013i \(0.322201\pi\)
\(128\) −476.707 + 1367.44i −0.329182 + 0.944266i
\(129\) −443.335 + 56.6946i −0.302585 + 0.0386952i
\(130\) −588.846 981.247i −0.397271 0.662008i
\(131\) 968.122i 0.645689i −0.946452 0.322844i \(-0.895361\pi\)
0.946452 0.322844i \(-0.104639\pi\)
\(132\) −405.897 1552.32i −0.267643 1.02358i
\(133\) −3852.22 −2.51151
\(134\) 714.102 812.359i 0.460366 0.523710i
\(135\) 113.449 + 1564.45i 0.0723269 + 0.997381i
\(136\) −947.478 + 1407.29i −0.597394 + 0.887307i
\(137\) −508.245 −0.316951 −0.158476 0.987363i \(-0.550658\pi\)
−0.158476 + 0.987363i \(0.550658\pi\)
\(138\) 1396.01 + 942.667i 0.861133 + 0.581486i
\(139\) −136.471 −0.0832756 −0.0416378 0.999133i \(-0.513258\pi\)
−0.0416378 + 0.999133i \(0.513258\pi\)
\(140\) 453.867 2485.37i 0.273991 1.50037i
\(141\) 1236.08 158.073i 0.738274 0.0944121i
\(142\) 264.717 + 232.699i 0.156441 + 0.137519i
\(143\) 1396.81i 0.816832i
\(144\) 1506.83 845.838i 0.872009 0.489489i
\(145\) 1164.35 + 371.927i 0.666854 + 0.213013i
\(146\) −500.026 + 568.826i −0.283441 + 0.322441i
\(147\) 299.825 + 2344.54i 0.168226 + 1.31547i
\(148\) 103.004 + 796.790i 0.0572084 + 0.442539i
\(149\) −17.4717 −0.00960627 −0.00480314 0.999988i \(-0.501529\pi\)
−0.00480314 + 0.999988i \(0.501529\pi\)
\(150\) 1720.32 644.588i 0.936424 0.350869i
\(151\) 2010.13i 1.08332i −0.840596 0.541662i \(-0.817795\pi\)
0.840596 0.541662i \(-0.182205\pi\)
\(152\) −1723.41 + 2559.77i −0.919651 + 1.36595i
\(153\) 1959.21 509.427i 1.03525 0.269181i
\(154\) 2035.99 2316.13i 1.06536 1.21194i
\(155\) −194.300 + 608.273i −0.100688 + 0.315211i
\(156\) 1455.38 380.551i 0.746949 0.195311i
\(157\) −1184.99 −0.602372 −0.301186 0.953565i \(-0.597382\pi\)
−0.301186 + 0.953565i \(0.597382\pi\)
\(158\) −1094.68 + 1245.30i −0.551191 + 0.627032i
\(159\) 2458.14 314.352i 1.22606 0.156791i
\(160\) −1448.46 1413.50i −0.715691 0.698417i
\(161\) 3237.49i 1.58478i
\(162\) −2015.61 434.567i −0.977538 0.210758i
\(163\) 2466.08i 1.18502i −0.805564 0.592509i \(-0.798137\pi\)
0.805564 0.592509i \(-0.201863\pi\)
\(164\) −1380.33 + 178.440i −0.657232 + 0.0849625i
\(165\) 2205.33 + 405.847i 1.04052 + 0.191486i
\(166\) −599.913 527.352i −0.280495 0.246569i
\(167\) 1316.99i 0.610249i 0.952312 + 0.305125i \(0.0986981\pi\)
−0.952312 + 0.305125i \(0.901302\pi\)
\(168\) 2967.95 + 1490.36i 1.36299 + 0.684426i
\(169\) −887.416 −0.403922
\(170\) −1219.99 2032.99i −0.550408 0.917194i
\(171\) 3563.69 926.619i 1.59370 0.414388i
\(172\) −682.439 + 88.2210i −0.302532 + 0.0391093i
\(173\) 1714.78i 0.753598i 0.926295 + 0.376799i \(0.122975\pi\)
−0.926295 + 0.376799i \(0.877025\pi\)
\(174\) −899.177 + 1331.61i −0.391761 + 0.580166i
\(175\) 2877.02 + 2046.86i 1.24276 + 0.884162i
\(176\) −628.190 2389.09i −0.269043 1.02321i
\(177\) −3928.94 + 502.442i −1.66846 + 0.213366i
\(178\) 1129.37 1284.76i 0.475561 0.540995i
\(179\) 3149.55i 1.31513i 0.753397 + 0.657566i \(0.228414\pi\)
−0.753397 + 0.657566i \(0.771586\pi\)
\(180\) 177.962 + 2408.39i 0.0736916 + 0.997281i
\(181\) 3071.89i 1.26150i −0.775985 0.630752i \(-0.782747\pi\)
0.775985 0.630752i \(-0.217253\pi\)
\(182\) 2171.50 + 1908.85i 0.884409 + 0.777438i
\(183\) −3169.00 + 405.259i −1.28011 + 0.163703i
\(184\) 2151.28 + 1448.39i 0.861928 + 0.580307i
\(185\) −1069.57 341.653i −0.425062 0.135777i
\(186\) −695.651 469.743i −0.274234 0.185179i
\(187\) 2893.96i 1.13170i
\(188\) 1902.73 245.973i 0.738144 0.0954223i
\(189\) −1475.72 3677.90i −0.567953 1.41549i
\(190\) −2219.10 3697.89i −0.847318 1.41196i
\(191\) −1462.25 −0.553953 −0.276977 0.960877i \(-0.589332\pi\)
−0.276977 + 0.960877i \(0.589332\pi\)
\(192\) 2318.14 1305.43i 0.871339 0.490682i
\(193\) 1745.22i 0.650901i 0.945559 + 0.325450i \(0.105516\pi\)
−0.945559 + 0.325450i \(0.894484\pi\)
\(194\) 1944.24 2211.76i 0.719528 0.818531i
\(195\) −380.504 + 2067.62i −0.139736 + 0.759310i
\(196\) 466.550 + 3609.03i 0.170026 + 1.31524i
\(197\) 3.00587i 0.00108710i −1.00000 0.000543552i \(-0.999827\pi\)
1.00000 0.000543552i \(-0.000173018\pi\)
\(198\) −1326.37 + 2632.39i −0.476065 + 0.944828i
\(199\) 5110.77i 1.82057i 0.413986 + 0.910283i \(0.364136\pi\)
−0.413986 + 0.910283i \(0.635864\pi\)
\(200\) 2647.25 996.032i 0.935943 0.352150i
\(201\) −1970.98 + 252.054i −0.691654 + 0.0884502i
\(202\) −1088.92 957.213i −0.379288 0.333412i
\(203\) −3088.13 −1.06770
\(204\) 3015.32 788.441i 1.03488 0.270598i
\(205\) 591.869 1852.89i 0.201649 0.631277i
\(206\) 1250.44 + 1099.20i 0.422924 + 0.371771i
\(207\) −778.749 2995.00i −0.261482 1.00564i
\(208\) 2239.91 588.962i 0.746681 0.196333i
\(209\) 5263.95i 1.74218i
\(210\) −3644.71 + 2873.83i −1.19766 + 0.944348i
\(211\) 1204.36 0.392946 0.196473 0.980509i \(-0.437051\pi\)
0.196473 + 0.980509i \(0.437051\pi\)
\(212\) 3783.89 489.155i 1.22584 0.158468i
\(213\) −82.1349 642.270i −0.0264215 0.206608i
\(214\) −3988.82 3506.37i −1.27416 1.12005i
\(215\) 292.621 916.072i 0.0928212 0.290584i
\(216\) −3104.15 664.813i −0.977826 0.209420i
\(217\) 1613.28i 0.504685i
\(218\) 1556.67 1770.86i 0.483630 0.550175i
\(219\) 1380.11 176.492i 0.425842 0.0544576i
\(220\) 3396.19 + 620.196i 1.04078 + 0.190062i
\(221\) 2713.25 0.825851
\(222\) 825.985 1223.22i 0.249714 0.369806i
\(223\) −2027.95 −0.608974 −0.304487 0.952516i \(-0.598485\pi\)
−0.304487 + 0.952516i \(0.598485\pi\)
\(224\) 4572.60 + 2288.30i 1.36393 + 0.682560i
\(225\) −3153.89 1201.51i −0.934485 0.356003i
\(226\) −2104.15 1849.65i −0.619318 0.544410i
\(227\) −1702.71 −0.497853 −0.248926 0.968522i \(-0.580078\pi\)
−0.248926 + 0.968522i \(0.580078\pi\)
\(228\) 5484.70 1434.13i 1.59313 0.416568i
\(229\) 1511.84i 0.436268i 0.975919 + 0.218134i \(0.0699970\pi\)
−0.975919 + 0.218134i \(0.930003\pi\)
\(230\) −3107.78 + 1864.98i −0.890960 + 0.534665i
\(231\) −5619.51 + 718.636i −1.60059 + 0.204687i
\(232\) −1381.57 + 2052.04i −0.390967 + 0.580702i
\(233\) −5111.87 −1.43730 −0.718648 0.695374i \(-0.755239\pi\)
−0.718648 + 0.695374i \(0.755239\pi\)
\(234\) −2468.01 1243.54i −0.689483 0.347406i
\(235\) −815.867 + 2554.14i −0.226474 + 0.708994i
\(236\) −6047.94 + 781.837i −1.66817 + 0.215649i
\(237\) 3021.42 386.385i 0.828110 0.105901i
\(238\) 4499.01 + 3954.84i 1.22533 + 1.07712i
\(239\) 4889.33 1.32328 0.661641 0.749820i \(-0.269860\pi\)
0.661641 + 0.749820i \(0.269860\pi\)
\(240\) 279.064 + 3707.58i 0.0750562 + 0.997179i
\(241\) −3939.29 −1.05291 −0.526456 0.850202i \(-0.676480\pi\)
−0.526456 + 0.850202i \(0.676480\pi\)
\(242\) 337.431 + 296.618i 0.0896318 + 0.0787907i
\(243\) 2249.88 + 3047.45i 0.593950 + 0.804502i
\(244\) −4878.14 + 630.613i −1.27988 + 0.165454i
\(245\) −4844.58 1547.50i −1.26330 0.403536i
\(246\) 2119.06 + 1430.91i 0.549213 + 0.370860i
\(247\) 4935.25 1.27135
\(248\) −1072.01 721.751i −0.274488 0.184803i
\(249\) 186.137 + 1455.54i 0.0473734 + 0.370445i
\(250\) −307.529 + 3940.87i −0.0777994 + 0.996969i
\(251\) 5503.76i 1.38404i −0.721878 0.692020i \(-0.756721\pi\)
0.721878 0.692020i \(-0.243279\pi\)
\(252\) −2279.77 5659.38i −0.569889 1.41471i
\(253\) −4423.93 −1.09933
\(254\) −3222.67 2832.88i −0.796096 0.699807i
\(255\) −788.345 + 4283.79i −0.193600 + 1.05200i
\(256\) 3566.25 2014.72i 0.870666 0.491874i
\(257\) 4939.16 1.19882 0.599410 0.800442i \(-0.295402\pi\)
0.599410 + 0.800442i \(0.295402\pi\)
\(258\) 1047.67 + 707.444i 0.252809 + 0.170711i
\(259\) 2836.76 0.680569
\(260\) −581.468 + 3184.11i −0.138697 + 0.759501i
\(261\) 2856.82 742.822i 0.677521 0.176167i
\(262\) −1807.87 + 2056.62i −0.426300 + 0.484956i
\(263\) 318.680i 0.0747174i −0.999302 0.0373587i \(-0.988106\pi\)
0.999302 0.0373587i \(-0.0118944\pi\)
\(264\) −2036.53 + 4055.63i −0.474772 + 0.945479i
\(265\) −1622.48 + 5079.30i −0.376106 + 1.17743i
\(266\) 8183.44 + 7193.63i 1.88631 + 1.65816i
\(267\) −3117.16 + 398.629i −0.714482 + 0.0913696i
\(268\) −3033.99 + 392.214i −0.691532 + 0.0893966i
\(269\) 4006.24 0.908048 0.454024 0.890990i \(-0.349988\pi\)
0.454024 + 0.890990i \(0.349988\pi\)
\(270\) 2680.45 3535.28i 0.604173 0.796853i
\(271\) 2562.23i 0.574333i 0.957881 + 0.287166i \(0.0927132\pi\)
−0.957881 + 0.287166i \(0.907287\pi\)
\(272\) 4640.73 1220.24i 1.03451 0.272014i
\(273\) −673.761 5268.60i −0.149369 1.16802i
\(274\) 1079.69 + 949.096i 0.238052 + 0.209259i
\(275\) −2796.98 + 3931.37i −0.613325 + 0.862074i
\(276\) −1205.27 4609.46i −0.262858 1.00528i
\(277\) 825.382 0.179034 0.0895170 0.995985i \(-0.471468\pi\)
0.0895170 + 0.995985i \(0.471468\pi\)
\(278\) 289.911 + 254.845i 0.0625456 + 0.0549806i
\(279\) 388.061 + 1492.45i 0.0832710 + 0.320252i
\(280\) −5605.34 + 4432.22i −1.19637 + 0.945986i
\(281\) 5330.02i 1.13154i 0.824564 + 0.565769i \(0.191421\pi\)
−0.824564 + 0.565769i \(0.808579\pi\)
\(282\) −2921.04 1972.45i −0.616827 0.416517i
\(283\) 1059.77i 0.222603i −0.993787 0.111301i \(-0.964498\pi\)
0.993787 0.111301i \(-0.0355019\pi\)
\(284\) −127.808 988.665i −0.0267042 0.206572i
\(285\) −1433.95 + 7791.96i −0.298035 + 1.61949i
\(286\) −2608.40 + 2967.30i −0.539292 + 0.613496i
\(287\) 4914.31i 1.01074i
\(288\) −4780.54 1017.01i −0.978111 0.208082i
\(289\) 708.423 0.144194
\(290\) −1778.94 2964.40i −0.360217 0.600261i
\(291\) −5366.27 + 686.251i −1.08102 + 0.138243i
\(292\) 2124.45 274.635i 0.425767 0.0550403i
\(293\) 8474.01i 1.68961i −0.535072 0.844807i \(-0.679715\pi\)
0.535072 0.844807i \(-0.320285\pi\)
\(294\) 3741.26 5540.50i 0.742160 1.09908i
\(295\) 2593.28 8118.46i 0.511818 1.60229i
\(296\) 1269.11 1885.00i 0.249208 0.370147i
\(297\) 5025.75 2016.53i 0.981897 0.393977i
\(298\) 37.1158 + 32.6266i 0.00721497 + 0.00634230i
\(299\) 4147.68i 0.802230i
\(300\) −4858.25 1843.20i −0.934971 0.354724i
\(301\) 2429.64i 0.465256i
\(302\) −3753.71 + 4270.20i −0.715238 + 0.813651i
\(303\) 337.863 + 2641.99i 0.0640586 + 0.500919i
\(304\) 8441.22 2219.54i 1.59256 0.418748i
\(305\) 2091.68 6548.18i 0.392686 1.22934i
\(306\) −5113.33 2576.43i −0.955261 0.481322i
\(307\) 4523.38i 0.840921i −0.907311 0.420461i \(-0.861869\pi\)
0.907311 0.420461i \(-0.138131\pi\)
\(308\) −8650.28 + 1118.25i −1.60031 + 0.206877i
\(309\) −387.979 3033.88i −0.0714284 0.558548i
\(310\) 1548.65 929.343i 0.283733 0.170268i
\(311\) −6896.96 −1.25753 −0.628763 0.777597i \(-0.716438\pi\)
−0.628763 + 0.777597i \(0.716438\pi\)
\(312\) −3802.37 1909.36i −0.689958 0.346462i
\(313\) 5946.35i 1.07383i 0.843637 + 0.536913i \(0.180410\pi\)
−0.843637 + 0.536913i \(0.819590\pi\)
\(314\) 2517.32 + 2212.84i 0.452422 + 0.397701i
\(315\) 8514.04 + 467.052i 1.52289 + 0.0835409i
\(316\) 4650.96 601.244i 0.827964 0.107034i
\(317\) 5914.79i 1.04797i 0.851726 + 0.523987i \(0.175556\pi\)
−0.851726 + 0.523987i \(0.824444\pi\)
\(318\) −5808.95 3922.53i −1.02437 0.691713i
\(319\) 4219.84i 0.740644i
\(320\) 437.458 + 5707.59i 0.0764207 + 0.997076i
\(321\) 1237.63 + 9677.88i 0.215195 + 1.68276i
\(322\) 6045.68 6877.53i 1.04631 1.19028i
\(323\) 10225.0 1.76141
\(324\) 3470.33 + 4687.11i 0.595050 + 0.803689i
\(325\) −3685.87 2622.32i −0.629094 0.447570i
\(326\) −4605.14 + 5238.79i −0.782378 + 0.890029i
\(327\) −4296.55 + 549.453i −0.726606 + 0.0929199i
\(328\) 3265.52 + 2198.57i 0.549720 + 0.370108i
\(329\) 6774.17i 1.13517i
\(330\) −3927.00 4980.39i −0.655074 0.830793i
\(331\) 3816.59 0.633772 0.316886 0.948464i \(-0.397363\pi\)
0.316886 + 0.948464i \(0.397363\pi\)
\(332\) 289.643 + 2240.55i 0.0478802 + 0.370380i
\(333\) −2624.28 + 682.357i −0.431861 + 0.112291i
\(334\) 2459.34 2797.73i 0.402902 0.458339i
\(335\) 1300.94 4072.68i 0.212172 0.664222i
\(336\) −3521.86 8708.38i −0.571825 1.41393i
\(337\) 6334.65i 1.02395i 0.859001 + 0.511974i \(0.171086\pi\)
−0.859001 + 0.511974i \(0.828914\pi\)
\(338\) 1885.17 + 1657.16i 0.303373 + 0.266679i
\(339\) 652.862 + 5105.19i 0.104598 + 0.817922i
\(340\) −1204.71 + 6596.97i −0.192160 + 1.05227i
\(341\) 2204.50 0.350090
\(342\) −9300.86 4686.37i −1.47056 0.740965i
\(343\) 3160.31 0.497495
\(344\) 1614.48 + 1086.97i 0.253043 + 0.170365i
\(345\) 6548.52 + 1205.12i 1.02191 + 0.188063i
\(346\) 3202.18 3642.78i 0.497544 0.566003i
\(347\) 1191.58 0.184344 0.0921722 0.995743i \(-0.470619\pi\)
0.0921722 + 0.995743i \(0.470619\pi\)
\(348\) 4396.80 1149.67i 0.677279 0.177094i
\(349\) 4817.79i 0.738941i 0.929242 + 0.369471i \(0.120461\pi\)
−0.929242 + 0.369471i \(0.879539\pi\)
\(350\) −2289.47 9720.78i −0.349649 1.48456i
\(351\) 1890.61 + 4711.91i 0.287503 + 0.716534i
\(352\) −3126.90 + 6248.33i −0.473478 + 0.946128i
\(353\) −1191.94 −0.179718 −0.0898592 0.995954i \(-0.528642\pi\)
−0.0898592 + 0.995954i \(0.528642\pi\)
\(354\) 9284.68 + 6269.54i 1.39400 + 0.941307i
\(355\) 1327.14 + 423.926i 0.198414 + 0.0633794i
\(356\) −4798.33 + 620.296i −0.714357 + 0.0923472i
\(357\) −1395.92 10915.7i −0.206947 1.61826i
\(358\) 5881.47 6690.72i 0.868282 0.987753i
\(359\) 7172.59 1.05447 0.527235 0.849719i \(-0.323229\pi\)
0.527235 + 0.849719i \(0.323229\pi\)
\(360\) 4119.37 5448.56i 0.603082 0.797679i
\(361\) 11739.8 1.71159
\(362\) −5736.45 + 6525.75i −0.832876 + 0.947475i
\(363\) −104.696 818.692i −0.0151381 0.118375i
\(364\) −1048.42 8110.12i −0.150968 1.16782i
\(365\) −910.936 + 2851.76i −0.130632 + 0.408953i
\(366\) 7488.82 + 5056.88i 1.06953 + 0.722206i
\(367\) −1909.09 −0.271536 −0.135768 0.990741i \(-0.543350\pi\)
−0.135768 + 0.990741i \(0.543350\pi\)
\(368\) −1865.35 7094.17i −0.264233 1.00492i
\(369\) −1182.09 4546.23i −0.166768 0.641374i
\(370\) 1634.13 + 2723.10i 0.229607 + 0.382614i
\(371\) 13471.5i 1.88519i
\(372\) 600.603 + 2296.95i 0.0837091 + 0.320138i
\(373\) 9250.82 1.28415 0.642077 0.766640i \(-0.278073\pi\)
0.642077 + 0.766640i \(0.278073\pi\)
\(374\) −5404.18 + 6147.77i −0.747175 + 0.849982i
\(375\) 5211.17 5057.48i 0.717610 0.696445i
\(376\) −4501.38 3030.63i −0.617397 0.415672i
\(377\) 3956.33 0.540481
\(378\) −3733.16 + 10568.9i −0.507971 + 1.43811i
\(379\) −13617.5 −1.84561 −0.922803 0.385272i \(-0.874108\pi\)
−0.922803 + 0.385272i \(0.874108\pi\)
\(380\) −2191.30 + 11999.5i −0.295819 + 1.61990i
\(381\) 999.911 + 7819.00i 0.134454 + 1.05139i
\(382\) 3106.33 + 2730.61i 0.416057 + 0.365734i
\(383\) 4191.08i 0.559149i −0.960124 0.279575i \(-0.909807\pi\)
0.960124 0.279575i \(-0.0901934\pi\)
\(384\) −7362.26 1555.71i −0.978395 0.206744i
\(385\) 3709.13 11611.7i 0.490999 1.53711i
\(386\) 3259.03 3707.45i 0.429741 0.488871i
\(387\) −584.429 2247.66i −0.0767653 0.295232i
\(388\) −8260.46 + 1067.86i −1.08083 + 0.139722i
\(389\) −9075.46 −1.18289 −0.591445 0.806346i \(-0.701442\pi\)
−0.591445 + 0.806346i \(0.701442\pi\)
\(390\) 4669.39 3681.78i 0.606267 0.478037i
\(391\) 8593.34i 1.11147i
\(392\) 5748.37 8538.04i 0.740655 1.10009i
\(393\) 4989.87 638.116i 0.640473 0.0819051i
\(394\) −5.61316 + 6.38549i −0.000717733 + 0.000816489i
\(395\) −1994.27 + 6243.22i −0.254032 + 0.795267i
\(396\) 7733.39 3115.24i 0.981357 0.395320i
\(397\) −4124.77 −0.521451 −0.260726 0.965413i \(-0.583962\pi\)
−0.260726 + 0.965413i \(0.583962\pi\)
\(398\) 9543.84 10857.0i 1.20198 1.36737i
\(399\) −2539.11 19855.0i −0.318582 2.49122i
\(400\) −7483.64 2827.55i −0.935456 0.353444i
\(401\) 3706.51i 0.461582i −0.973003 0.230791i \(-0.925869\pi\)
0.973003 0.230791i \(-0.0741314\pi\)
\(402\) 4657.72 + 3145.16i 0.577876 + 0.390215i
\(403\) 2066.84i 0.255476i
\(404\) 525.740 + 4066.89i 0.0647440 + 0.500830i
\(405\) −7988.68 + 1615.91i −0.980150 + 0.198260i
\(406\) 6560.24 + 5766.76i 0.801919 + 0.704925i
\(407\) 3876.34i 0.472097i
\(408\) −7877.91 3955.89i −0.955918 0.480014i
\(409\) 2721.73 0.329048 0.164524 0.986373i \(-0.447391\pi\)
0.164524 + 0.986373i \(0.447391\pi\)
\(410\) −4717.42 + 2830.92i −0.568236 + 0.340998i
\(411\) −334.999 2619.59i −0.0402050 0.314391i
\(412\) −603.724 4670.14i −0.0721926 0.558450i
\(413\) 21532.1i 2.56543i
\(414\) −3938.52 + 7816.63i −0.467555 + 0.927938i
\(415\) −3007.61 960.718i −0.355753 0.113638i
\(416\) −5858.15 2931.64i −0.690432 0.345518i
\(417\) −89.9517 703.395i −0.0105634 0.0826029i
\(418\) −9829.89 + 11182.4i −1.15023 + 1.30849i
\(419\) 5358.54i 0.624777i −0.949954 0.312389i \(-0.898871\pi\)
0.949954 0.312389i \(-0.101129\pi\)
\(420\) 13109.2 + 701.136i 1.52301 + 0.0814569i
\(421\) 9513.73i 1.10136i 0.834718 + 0.550678i \(0.185631\pi\)
−0.834718 + 0.550678i \(0.814369\pi\)
\(422\) −2558.48 2249.02i −0.295130 0.259433i
\(423\) 1629.47 + 6266.78i 0.187299 + 0.720334i
\(424\) −8951.71 6026.89i −1.02531 0.690310i
\(425\) −7636.55 5433.04i −0.871593 0.620097i
\(426\) −1024.89 + 1517.78i −0.116564 + 0.172621i
\(427\) 17367.3i 1.96830i
\(428\) 1925.84 + 14897.4i 0.217498 + 1.68247i
\(429\) 7199.40 920.675i 0.810233 0.103614i
\(430\) −2332.30 + 1399.61i −0.261566 + 0.156966i
\(431\) −13279.4 −1.48410 −0.742049 0.670345i \(-0.766146\pi\)
−0.742049 + 0.670345i \(0.766146\pi\)
\(432\) 5352.79 + 7208.96i 0.596149 + 0.802874i
\(433\) 9112.89i 1.01140i −0.862709 0.505701i \(-0.831234\pi\)
0.862709 0.505701i \(-0.168766\pi\)
\(434\) −3012.64 + 3427.16i −0.333206 + 0.379053i
\(435\) −1149.53 + 6246.41i −0.126702 + 0.688488i
\(436\) −6613.81 + 854.989i −0.726478 + 0.0939141i
\(437\) 15630.8i 1.71103i
\(438\) −3261.41 2202.29i −0.355791 0.240250i
\(439\) 17049.8i 1.85363i 0.375519 + 0.926815i \(0.377464\pi\)
−0.375519 + 0.926815i \(0.622536\pi\)
\(440\) −6056.50 7659.54i −0.656210 0.829896i
\(441\) −11886.6 + 3090.71i −1.28351 + 0.333734i
\(442\) −5763.87 5066.72i −0.620270 0.545247i
\(443\) −1354.27 −0.145245 −0.0726224 0.997360i \(-0.523137\pi\)
−0.0726224 + 0.997360i \(0.523137\pi\)
\(444\) −4038.90 + 1056.08i −0.431707 + 0.112882i
\(445\) 2057.46 6441.04i 0.219175 0.686146i
\(446\) 4308.05 + 3786.98i 0.457381 + 0.402060i
\(447\) −11.5161 90.0521i −0.00121855 0.00952867i
\(448\) −5440.60 13400.0i −0.573759 1.41315i
\(449\) 18871.3i 1.98350i 0.128173 + 0.991752i \(0.459089\pi\)
−0.128173 + 0.991752i \(0.540911\pi\)
\(450\) 4456.23 + 8441.98i 0.466820 + 0.884353i
\(451\) −6715.27 −0.701130
\(452\) 1015.90 + 7858.56i 0.105717 + 0.817778i
\(453\) 10360.6 1324.93i 1.07457 0.137419i
\(454\) 3617.13 + 3179.63i 0.373921 + 0.328695i
\(455\) 10886.6 + 3477.51i 1.12170 + 0.358304i
\(456\) −14329.5 7195.54i −1.47158 0.738952i
\(457\) 667.236i 0.0682976i −0.999417 0.0341488i \(-0.989128\pi\)
0.999417 0.0341488i \(-0.0108720\pi\)
\(458\) 2823.21 3211.67i 0.288035 0.327667i
\(459\) 3917.05 + 9762.34i 0.398327 + 0.992738i
\(460\) 10084.6 + 1841.61i 1.02217 + 0.186664i
\(461\) 18594.5 1.87860 0.939300 0.343097i \(-0.111476\pi\)
0.939300 + 0.343097i \(0.111476\pi\)
\(462\) 13279.7 + 8967.24i 1.33729 + 0.903017i
\(463\) 3391.85 0.340460 0.170230 0.985404i \(-0.445549\pi\)
0.170230 + 0.985404i \(0.445549\pi\)
\(464\) 6766.89 1779.29i 0.677036 0.178020i
\(465\) −3263.21 600.529i −0.325436 0.0598900i
\(466\) 10859.4 + 9545.90i 1.07951 + 0.948938i
\(467\) −11937.5 −1.18287 −0.591437 0.806351i \(-0.701439\pi\)
−0.591437 + 0.806351i \(0.701439\pi\)
\(468\) 2920.71 + 7250.48i 0.288483 + 0.716140i
\(469\) 10801.7i 1.06349i
\(470\) 6502.77 3902.31i 0.638192 0.382979i
\(471\) −781.059 6107.64i −0.0764104 0.597506i
\(472\) 14307.9 + 9633.02i 1.39528 + 0.939398i
\(473\) −3320.03 −0.322738
\(474\) −7140.06 4821.37i −0.691885 0.467200i
\(475\) −13890.4 9882.39i −1.34176 0.954600i
\(476\) −2172.16 16802.9i −0.209162 1.61798i
\(477\) 3240.45 + 12462.5i 0.311049 + 1.19626i
\(478\) −10386.6 9130.33i −0.993875 0.873664i
\(479\) −6583.62 −0.628003 −0.314001 0.949423i \(-0.601670\pi\)
−0.314001 + 0.949423i \(0.601670\pi\)
\(480\) 6330.69 8397.28i 0.601990 0.798504i
\(481\) −3634.29 −0.344510
\(482\) 8368.39 + 7356.22i 0.790809 + 0.695159i
\(483\) −16686.6 + 2133.92i −1.57198 + 0.201028i
\(484\) −162.915 1260.24i −0.0153000 0.118354i
\(485\) 3541.98 11088.4i 0.331614 1.03814i
\(486\) 911.294 10675.2i 0.0850559 0.996376i
\(487\) −19593.7 −1.82315 −0.911576 0.411133i \(-0.865133\pi\)
−0.911576 + 0.411133i \(0.865133\pi\)
\(488\) 11540.4 + 7769.79i 1.07051 + 0.720742i
\(489\) 12710.6 1625.46i 1.17545 0.150319i
\(490\) 7401.74 + 12334.2i 0.682401 + 1.13715i
\(491\) 5466.42i 0.502436i 0.967931 + 0.251218i \(0.0808311\pi\)
−0.967931 + 0.251218i \(0.919169\pi\)
\(492\) −1829.53 6996.88i −0.167646 0.641145i
\(493\) 8196.89 0.748822
\(494\) −10484.1 9216.07i −0.954867 0.839374i
\(495\) −638.213 + 11634.2i −0.0579506 + 1.05640i
\(496\) 929.527 + 3535.12i 0.0841471 + 0.320023i
\(497\) −3519.88 −0.317682
\(498\) 2322.65 3439.65i 0.208997 0.309507i
\(499\) 4021.21 0.360750 0.180375 0.983598i \(-0.442269\pi\)
0.180375 + 0.983598i \(0.442269\pi\)
\(500\) 8012.46 7797.47i 0.716656 0.697426i
\(501\) −6787.99 + 868.063i −0.605319 + 0.0774096i
\(502\) −10277.7 + 11691.9i −0.913777 + 1.03951i
\(503\) 17774.3i 1.57558i −0.615946 0.787788i \(-0.711226\pi\)
0.615946 0.787788i \(-0.288774\pi\)
\(504\) −5725.31 + 16279.7i −0.506003 + 1.43880i
\(505\) −5459.20 1743.83i −0.481052 0.153662i
\(506\) 9397.94 + 8261.24i 0.825671 + 0.725805i
\(507\) −584.920 4573.90i −0.0512371 0.400659i
\(508\) 1555.94 + 12036.0i 0.135893 + 1.05120i
\(509\) −20544.9 −1.78907 −0.894537 0.446995i \(-0.852494\pi\)
−0.894537 + 0.446995i \(0.852494\pi\)
\(510\) 9674.24 7628.07i 0.839966 0.662307i
\(511\) 7563.53i 0.654777i
\(512\) −11338.2 2379.66i −0.978677 0.205405i
\(513\) 7124.89 + 17757.1i 0.613200 + 1.52826i
\(514\) −10492.5 9223.38i −0.900395 0.791490i
\(515\) 6268.97 + 2002.49i 0.536396 + 0.171341i
\(516\) −904.521 3459.26i −0.0771692 0.295127i
\(517\) 9256.71 0.787446
\(518\) −6026.24 5297.35i −0.511154 0.449329i
\(519\) −8838.29 + 1130.26i −0.747510 + 0.0955932i
\(520\) 7181.24 5678.31i 0.605612 0.478866i
\(521\) 18770.8i 1.57843i 0.614114 + 0.789217i \(0.289514\pi\)
−0.614114 + 0.789217i \(0.710486\pi\)
\(522\) −7456.01 3756.82i −0.625174 0.315003i
\(523\) 2828.70i 0.236502i 0.992984 + 0.118251i \(0.0377287\pi\)
−0.992984 + 0.118251i \(0.962271\pi\)
\(524\) 7681.06 992.956i 0.640360 0.0827814i
\(525\) −8653.58 + 16177.8i −0.719377 + 1.34487i
\(526\) −595.103 + 676.986i −0.0493303 + 0.0561178i
\(527\) 4282.17i 0.353955i
\(528\) 11899.8 4812.52i 0.980815 0.396663i
\(529\) −969.434 −0.0796773
\(530\) 12931.8 7760.36i 1.05985 0.636016i
\(531\) −5179.35 19919.3i −0.423286 1.62792i
\(532\) −3951.04 30563.5i −0.321991 2.49078i
\(533\) 6295.93i 0.511646i
\(534\) 7366.30 + 4974.15i 0.596949 + 0.403094i
\(535\) −19997.6 6387.83i −1.61602 0.516205i
\(536\) 7177.66 + 4832.48i 0.578410 + 0.389424i
\(537\) −16233.3 + 2075.96i −1.30451 + 0.166823i
\(538\) −8510.62 7481.25i −0.682006 0.599516i
\(539\) 17557.7i 1.40309i
\(540\) −12296.0 + 2504.68i −0.979877 + 0.199601i
\(541\) 16230.2i 1.28982i −0.764260 0.644908i \(-0.776896\pi\)
0.764260 0.644908i \(-0.223104\pi\)
\(542\) 4784.69 5443.04i 0.379189 0.431363i
\(543\) 15833.1 2024.77i 1.25131 0.160021i
\(544\) −12137.2 6073.89i −0.956574 0.478706i
\(545\) 2835.92 8878.06i 0.222894 0.697788i
\(546\) −8407.28 + 12450.5i −0.658971 + 0.975882i
\(547\) 9520.53i 0.744184i −0.928196 0.372092i \(-0.878641\pi\)
0.928196 0.372092i \(-0.121359\pi\)
\(548\) −521.282 4032.41i −0.0406352 0.314336i
\(549\) −4177.56 16066.5i −0.324761 1.24900i
\(550\) 13283.2 3128.49i 1.02981 0.242544i
\(551\) 14909.7 1.15276
\(552\) −6047.28 + 12042.8i −0.466285 + 0.928577i
\(553\) 16558.5i 1.27331i
\(554\) −1753.39 1541.32i −0.134467 0.118203i
\(555\) 1055.96 5737.95i 0.0807618 0.438852i
\(556\) −139.971 1082.76i −0.0106765 0.0825883i
\(557\) 7627.12i 0.580200i 0.956996 + 0.290100i \(0.0936885\pi\)
−0.956996 + 0.290100i \(0.906311\pi\)
\(558\) 1962.62 3895.13i 0.148896 0.295509i
\(559\) 3112.71i 0.235517i
\(560\) 20184.4 + 1051.85i 1.52312 + 0.0793728i
\(561\) 14916.0 1907.49i 1.12256 0.143555i
\(562\) 9953.27 11322.8i 0.747070 0.849862i
\(563\) −4278.28 −0.320263 −0.160131 0.987096i \(-0.551192\pi\)
−0.160131 + 0.987096i \(0.551192\pi\)
\(564\) 2521.93 + 9644.90i 0.188284 + 0.720077i
\(565\) −10549.0 3369.65i −0.785483 0.250906i
\(566\) −1979.01 + 2251.31i −0.146968 + 0.167190i
\(567\) 17983.9 10030.3i 1.33201 0.742919i
\(568\) −1574.72 + 2338.93i −0.116327 + 0.172780i
\(569\) 10517.7i 0.774910i −0.921889 0.387455i \(-0.873354\pi\)
0.921889 0.387455i \(-0.126646\pi\)
\(570\) 17596.9 13875.0i 1.29308 1.01958i
\(571\) 21394.5 1.56801 0.784003 0.620756i \(-0.213174\pi\)
0.784003 + 0.620756i \(0.213174\pi\)
\(572\) 11082.2 1432.64i 0.810091 0.104723i
\(573\) −963.813 7536.72i −0.0702685 0.549478i
\(574\) 9176.98 10439.7i 0.667316 0.759135i
\(575\) −8305.36 + 11673.8i −0.602361 + 0.846663i
\(576\) 8256.34 + 11087.6i 0.597247 + 0.802057i
\(577\) 11001.0i 0.793725i −0.917878 0.396862i \(-0.870099\pi\)
0.917878 0.396862i \(-0.129901\pi\)
\(578\) −1504.93 1322.91i −0.108299 0.0952002i
\(579\) −8995.19 + 1150.32i −0.645643 + 0.0825663i
\(580\) −1756.65 + 9619.39i −0.125760 + 0.688661i
\(581\) 7976.88 0.569599
\(582\) 12681.3 + 8563.13i 0.903190 + 0.609885i
\(583\) 18408.4 1.30772
\(584\) −5025.91 3383.78i −0.356119 0.239763i
\(585\) −10907.7 598.360i −0.770902 0.0422891i
\(586\) −15824.3 + 18001.7i −1.11552 + 1.26901i
\(587\) 4095.31 0.287958 0.143979 0.989581i \(-0.454010\pi\)
0.143979 + 0.989581i \(0.454010\pi\)
\(588\) −18294.0 + 4783.49i −1.28305 + 0.335490i
\(589\) 7789.03i 0.544892i
\(590\) −20669.4 + 12403.7i −1.44228 + 0.865513i
\(591\) 15.4928 1.98125i 0.00107832 0.000137898i
\(592\) −6216.07 + 1634.46i −0.431552 + 0.113473i
\(593\) −11978.2 −0.829490 −0.414745 0.909938i \(-0.636129\pi\)
−0.414745 + 0.909938i \(0.636129\pi\)
\(594\) −14442.1 5101.26i −0.997585 0.352369i
\(595\) 22555.4 + 7204.85i 1.55408 + 0.496420i
\(596\) −17.9198 138.620i −0.00123159 0.00952700i
\(597\) −26341.8 + 3368.65i −1.80586 + 0.230937i
\(598\) −7745.37 + 8811.09i −0.529652 + 0.602529i
\(599\) 13370.9 0.912056 0.456028 0.889965i \(-0.349272\pi\)
0.456028 + 0.889965i \(0.349272\pi\)
\(600\) 6878.60 + 12987.9i 0.468029 + 0.883713i
\(601\) −3829.24 −0.259897 −0.129948 0.991521i \(-0.541481\pi\)
−0.129948 + 0.991521i \(0.541481\pi\)
\(602\) 4537.10 5161.38i 0.307174 0.349439i
\(603\) −2598.26 9992.66i −0.175471 0.674847i
\(604\) 15948.3 2061.69i 1.07438 0.138889i
\(605\) 1691.68 + 540.373i 0.113680 + 0.0363129i
\(606\) 4215.91 6243.41i 0.282606 0.418517i
\(607\) 274.138 0.0183310 0.00916549 0.999958i \(-0.497082\pi\)
0.00916549 + 0.999958i \(0.497082\pi\)
\(608\) −22076.8 11048.1i −1.47259 0.736937i
\(609\) −2035.47 15916.8i −0.135437 1.05908i
\(610\) −16671.5 + 10004.6i −1.10657 + 0.664054i
\(611\) 8678.68i 0.574635i
\(612\) 6051.25 + 15021.8i 0.399685 + 0.992192i
\(613\) 9402.87 0.619541 0.309770 0.950811i \(-0.399748\pi\)
0.309770 + 0.950811i \(0.399748\pi\)
\(614\) −8446.94 + 9609.20i −0.555197 + 0.631589i
\(615\) 9940.26 + 1829.31i 0.651756 + 0.119943i
\(616\) 20464.4 + 13778.0i 1.33853 + 0.901186i
\(617\) 11725.6 0.765082 0.382541 0.923938i \(-0.375049\pi\)
0.382541 + 0.923938i \(0.375049\pi\)
\(618\) −4841.26 + 7169.51i −0.315120 + 0.466666i
\(619\) 7217.50 0.468653 0.234326 0.972158i \(-0.424712\pi\)
0.234326 + 0.972158i \(0.424712\pi\)
\(620\) −5025.31 917.699i −0.325518 0.0594446i
\(621\) 14923.5 5987.90i 0.964344 0.386934i
\(622\) 14651.5 + 12879.4i 0.944487 + 0.830250i
\(623\) 17083.2i 1.09859i
\(624\) 4512.00 + 11156.7i 0.289463 + 0.715744i
\(625\) 5123.06 + 14761.3i 0.327876 + 0.944721i
\(626\) 11104.2 12632.1i 0.708967 0.806517i
\(627\) 27131.4 3469.62i 1.72811 0.220994i
\(628\) −1215.38 9401.68i −0.0772279 0.597401i
\(629\) −7529.67 −0.477309
\(630\) −17214.6 16891.3i −1.08864 1.06820i
\(631\) 7589.28i 0.478803i 0.970921 + 0.239401i \(0.0769511\pi\)
−0.970921 + 0.239401i \(0.923049\pi\)
\(632\) −11003.0 7407.94i −0.692524 0.466253i
\(633\) 793.828 + 6207.50i 0.0498449 + 0.389772i
\(634\) 11045.3 12565.0i 0.691898 0.787100i
\(635\) −16156.6 5160.89i −1.00969 0.322525i
\(636\) 5015.26 + 19180.4i 0.312685 + 1.19584i
\(637\) −16461.4 −1.02390
\(638\) −7880.11 + 8964.37i −0.488992 + 0.556274i
\(639\) 3256.23 846.675i 0.201588 0.0524162i
\(640\) 9729.04 12941.8i 0.600897 0.799327i
\(641\) 812.707i 0.0500780i −0.999686 0.0250390i \(-0.992029\pi\)
0.999686 0.0250390i \(-0.00797099\pi\)
\(642\) 15443.3 22870.3i 0.949374 1.40595i
\(643\) 9472.41i 0.580957i 0.956882 + 0.290478i \(0.0938145\pi\)
−0.956882 + 0.290478i \(0.906186\pi\)
\(644\) −25686.2 + 3320.53i −1.57170 + 0.203179i
\(645\) 4914.47 + 904.410i 0.300011 + 0.0552110i
\(646\) −21721.5 19094.2i −1.32294 1.16293i
\(647\) 10796.3i 0.656024i −0.944674 0.328012i \(-0.893621\pi\)
0.944674 0.328012i \(-0.106379\pi\)
\(648\) 1380.54 16437.5i 0.0836923 0.996492i
\(649\) −29423.0 −1.77959
\(650\) 2933.13 + 12453.7i 0.176995 + 0.751499i
\(651\) 8315.14 1063.36i 0.500609 0.0640189i
\(652\) 19565.8 2529.33i 1.17524 0.151927i
\(653\) 19320.8i 1.15786i 0.815378 + 0.578929i \(0.196529\pi\)
−0.815378 + 0.578929i \(0.803471\pi\)
\(654\) 10153.4 + 6856.15i 0.607078 + 0.409934i
\(655\) −3293.54 + 10310.7i −0.196472 + 0.615071i
\(656\) −2831.48 10768.5i −0.168523 0.640915i
\(657\) 1819.34 + 6997.02i 0.108035 + 0.415494i
\(658\) −12650.1 + 14390.7i −0.749470 + 0.852593i
\(659\) 8746.91i 0.517043i 0.966006 + 0.258521i \(0.0832353\pi\)
−0.966006 + 0.258521i \(0.916765\pi\)
\(660\) −958.082 + 17913.3i −0.0565050 + 1.05648i
\(661\) 24966.4i 1.46911i −0.678552 0.734553i \(-0.737392\pi\)
0.678552 0.734553i \(-0.262608\pi\)
\(662\) −8107.73 7127.08i −0.476006 0.418432i
\(663\) 1788.38 + 13984.6i 0.104758 + 0.819179i
\(664\) 3568.70 5300.57i 0.208573 0.309792i
\(665\) 41026.9 + 13105.2i 2.39241 + 0.764208i
\(666\) 6849.10 + 3451.02i 0.398494 + 0.200787i
\(667\) 12530.4i 0.727404i
\(668\) −10449.0 + 1350.77i −0.605213 + 0.0782378i
\(669\) −1336.68 10452.4i −0.0772479 0.604055i
\(670\) −10369.0 + 6222.41i −0.597892 + 0.358795i
\(671\) −23731.9 −1.36537
\(672\) −8780.38 + 25076.3i −0.504034 + 1.43949i
\(673\) 28415.4i 1.62754i 0.581188 + 0.813769i \(0.302588\pi\)
−0.581188 + 0.813769i \(0.697412\pi\)
\(674\) 11829.3 13457.0i 0.676036 0.769055i
\(675\) 4113.98 17047.6i 0.234589 0.972095i
\(676\) −910.179 7040.74i −0.0517853 0.400588i
\(677\) 13799.2i 0.783377i −0.920098 0.391689i \(-0.871891\pi\)
0.920098 0.391689i \(-0.128109\pi\)
\(678\) 8146.51 12064.3i 0.461452 0.683373i
\(679\) 29409.2i 1.66218i
\(680\) 14878.4 11764.6i 0.839059 0.663456i
\(681\) −1122.30 8776.05i −0.0631522 0.493831i
\(682\) −4683.12 4116.69i −0.262941 0.231138i
\(683\) 34785.2 1.94878 0.974392 0.224858i \(-0.0721917\pi\)
0.974392 + 0.224858i \(0.0721917\pi\)
\(684\) 11006.9 + 27323.9i 0.615290 + 1.52742i
\(685\) 5412.91 + 1729.04i 0.301922 + 0.0964428i
\(686\) −6713.58 5901.56i −0.373653 0.328459i
\(687\) −7792.30 + 996.497i −0.432744 + 0.0553402i
\(688\) −1399.89 5323.97i −0.0775730 0.295021i
\(689\) 17258.9i 0.954300i
\(690\) −11660.8 14788.8i −0.643364 0.815941i
\(691\) −19390.7 −1.06752 −0.533760 0.845636i \(-0.679221\pi\)
−0.533760 + 0.845636i \(0.679221\pi\)
\(692\) −13605.0 + 1758.77i −0.747379 + 0.0966160i
\(693\) −7407.95 28490.3i −0.406068 1.56170i
\(694\) −2531.33 2225.16i −0.138455 0.121709i
\(695\) 1453.44 + 464.272i 0.0793268 + 0.0253393i
\(696\) −11487.2 5768.29i −0.625604 0.314147i
\(697\) 13044.2i 0.708871i
\(698\) 8996.74 10234.6i 0.487867 0.554995i
\(699\) −3369.38 26347.5i −0.182320 1.42568i
\(700\) −13289.0 + 24925.6i −0.717536 + 1.34586i
\(701\) −21164.3 −1.14032 −0.570160 0.821534i \(-0.693119\pi\)
−0.570160 + 0.821534i \(0.693119\pi\)
\(702\) 4782.71 13540.2i 0.257139 0.727982i
\(703\) −13696.0 −0.734787
\(704\) 18310.7 7434.42i 0.980271 0.398005i
\(705\) −13702.2 2521.62i −0.731994 0.134709i
\(706\) 2532.09 + 2225.83i 0.134981 + 0.118654i
\(707\) 14479.1 0.770215
\(708\) −8016.09 30656.8i −0.425513 1.62734i
\(709\) 4868.59i 0.257890i −0.991652 0.128945i \(-0.958841\pi\)
0.991652 0.128945i \(-0.0411590\pi\)
\(710\) −2027.65 3378.85i −0.107178 0.178600i
\(711\) 3983.00 + 15318.2i 0.210090 + 0.807987i
\(712\) 11351.6 + 7642.67i 0.597500 + 0.402277i
\(713\) 6546.06 0.343831
\(714\) −17418.5 + 25795.4i −0.912987 + 1.35206i
\(715\) −4751.92 + 14876.3i −0.248548 + 0.778099i
\(716\) −24988.5 + 3230.34i −1.30428 + 0.168608i
\(717\) 3222.69 + 25200.5i 0.167857 + 1.31259i
\(718\) −15237.0 13394.1i −0.791979 0.696188i
\(719\) −20252.9 −1.05049 −0.525246 0.850950i \(-0.676027\pi\)
−0.525246 + 0.850950i \(0.676027\pi\)
\(720\) −18925.6 + 3882.11i −0.979603 + 0.200941i
\(721\) −16626.8 −0.858826
\(722\) −24939.3 21922.8i −1.28552 1.13003i
\(723\) −2596.49 20303.8i −0.133561 1.04441i
\(724\) 24372.4 3150.69i 1.25109 0.161733i
\(725\) −11135.2 7922.19i −0.570417 0.405825i
\(726\) −1306.41 + 1934.69i −0.0667845 + 0.0989023i
\(727\) 8380.16 0.427515 0.213757 0.976887i \(-0.431430\pi\)
0.213757 + 0.976887i \(0.431430\pi\)
\(728\) −12917.6 + 19186.5i −0.657635 + 0.976783i
\(729\) −14224.1 + 13604.9i −0.722662 + 0.691202i
\(730\) 7260.50 4357.03i 0.368114 0.220905i
\(731\) 6449.05i 0.326302i
\(732\) −6465.61 24727.2i −0.326470 1.24855i
\(733\) 26525.6 1.33662 0.668311 0.743882i \(-0.267018\pi\)
0.668311 + 0.743882i \(0.267018\pi\)
\(734\) 4055.57 + 3565.04i 0.203942 + 0.179275i
\(735\) 4782.91 25989.8i 0.240027 1.30428i
\(736\) −9285.01 + 18553.8i −0.465014 + 0.929214i
\(737\) −14760.2 −0.737721
\(738\) −5978.44 + 11865.2i −0.298197 + 0.591820i
\(739\) 16456.9 0.819184 0.409592 0.912269i \(-0.365671\pi\)
0.409592 + 0.912269i \(0.365671\pi\)
\(740\) 1613.66 8836.38i 0.0801612 0.438962i
\(741\) 3252.96 + 25437.1i 0.161269 + 1.26108i
\(742\) −25156.7 + 28618.1i −1.24465 + 1.41591i
\(743\) 11323.5i 0.559112i 0.960129 + 0.279556i \(0.0901873\pi\)
−0.960129 + 0.279556i \(0.909813\pi\)
\(744\) 3013.44 6001.07i 0.148492 0.295712i
\(745\) 186.077 + 59.4384i 0.00915076 + 0.00292302i
\(746\) −19651.9 17275.0i −0.964487 0.847830i
\(747\) −7379.41 + 1918.77i −0.361444 + 0.0939814i
\(748\) 22960.6 2968.20i 1.12236 0.145091i
\(749\) 53038.3 2.58742
\(750\) −20514.6 + 1012.47i −0.998784 + 0.0492938i
\(751\) 17017.6i 0.826872i 0.910533 + 0.413436i \(0.135672\pi\)
−0.910533 + 0.413436i \(0.864328\pi\)
\(752\) 3903.08 + 14844.0i 0.189270 + 0.719819i
\(753\) 28367.3 3627.68i 1.37286 0.175564i
\(754\) −8404.59 7388.04i −0.405938 0.356839i
\(755\) −6838.43 + 21408.3i −0.329637 + 1.03196i
\(756\) 27666.8 15480.6i 1.33100 0.744741i
\(757\) 32951.4 1.58209 0.791044 0.611759i \(-0.209538\pi\)
0.791044 + 0.611759i \(0.209538\pi\)
\(758\) 28928.2 + 25429.3i 1.38618 + 1.21852i
\(759\) −2915.94 22801.7i −0.139449 1.09045i
\(760\) 27062.9 21399.0i 1.29168 1.02135i
\(761\) 26158.8i 1.24607i −0.782196 0.623033i \(-0.785900\pi\)
0.782196 0.623033i \(-0.214100\pi\)
\(762\) 12477.0 18477.5i 0.593170 0.878435i
\(763\) 23546.7i 1.11723i
\(764\) −1499.76 11601.5i −0.0710203 0.549382i
\(765\) −22599.0 1239.71i −1.06806 0.0585904i
\(766\) −7826.41 + 8903.28i −0.369164 + 0.419959i
\(767\) 27585.7i 1.29864i
\(768\) 12734.8 + 17053.1i 0.598344 + 0.801239i
\(769\) 14374.4 0.674065 0.337032 0.941493i \(-0.390577\pi\)
0.337032 + 0.941493i \(0.390577\pi\)
\(770\) −29563.1 + 17740.8i −1.38361 + 0.830306i
\(771\) 3255.54 + 25457.3i 0.152069 + 1.18914i
\(772\) −13846.6 + 1789.99i −0.645529 + 0.0834497i
\(773\) 10943.3i 0.509189i −0.967048 0.254595i \(-0.918058\pi\)
0.967048 0.254595i \(-0.0819420\pi\)
\(774\) −2955.75 + 5866.15i −0.137264 + 0.272422i
\(775\) 4138.67 5817.21i 0.191826 0.269626i
\(776\) 19542.2 + 13157.1i 0.904024 + 0.608649i
\(777\) 1869.78 + 14621.1i 0.0863296 + 0.675072i
\(778\) 19279.4 + 16947.5i 0.888430 + 0.780973i
\(779\) 23726.6i 1.09126i
\(780\) −16794.7 898.254i −0.770959 0.0412342i
\(781\) 4809.81i 0.220369i
\(782\) −16047.2 + 18255.2i −0.733818 + 0.834788i
\(783\) 5711.65 + 14235.0i 0.260687 + 0.649701i
\(784\) −28155.4 + 7403.20i −1.28259 + 0.337245i
\(785\) 12620.3 + 4031.31i 0.573808 + 0.183291i
\(786\) −11791.8 7962.50i −0.535115 0.361340i
\(787\) 39944.3i 1.80922i 0.426235 + 0.904612i \(0.359840\pi\)
−0.426235 + 0.904612i \(0.640160\pi\)
\(788\) 23.8485 3.08297i 0.00107813 0.000139374i
\(789\) 1642.54 210.051i 0.0741138 0.00947784i
\(790\) 15895.1 9538.63i 0.715850 0.429581i
\(791\) 27978.3 1.25764
\(792\) −22245.7 7823.47i −0.998066 0.351004i
\(793\) 22250.0i 0.996369i
\(794\) 8762.42 + 7702.59i 0.391646 + 0.344275i
\(795\) −27249.1 5014.64i −1.21563 0.223712i
\(796\) −40548.7 + 5241.87i −1.80554 + 0.233408i
\(797\) 18167.9i 0.807452i 0.914880 + 0.403726i \(0.132285\pi\)
−0.914880 + 0.403726i \(0.867715\pi\)
\(798\) −31683.3 + 46920.4i −1.40549 + 2.08141i
\(799\) 17980.8i 0.796141i
\(800\) 10617.6 + 19981.6i 0.469238 + 0.883072i
\(801\) −4109.21 15803.6i −0.181263 0.697121i
\(802\) −6921.54 + 7873.90i −0.304748 + 0.346680i
\(803\) 10335.4 0.454205
\(804\) −4021.33 15379.2i −0.176395 0.674606i
\(805\) 11013.9 34479.8i 0.482222 1.50963i
\(806\) 3859.62 4390.68i 0.168672 0.191880i
\(807\) 2640.62 + 20648.9i 0.115185 + 0.900712i
\(808\) 6477.65 9621.23i 0.282034 0.418903i
\(809\) 9630.14i 0.418514i −0.977861 0.209257i \(-0.932895\pi\)
0.977861 0.209257i \(-0.0671045\pi\)
\(810\) 19988.2 + 11485.3i 0.867055 + 0.498213i
\(811\) 23594.1 1.02158 0.510791 0.859705i \(-0.329353\pi\)
0.510791 + 0.859705i \(0.329353\pi\)
\(812\) −3167.34 24501.1i −0.136887 1.05889i
\(813\) −13206.2 + 1688.83i −0.569693 + 0.0728536i
\(814\) 7238.68 8234.68i 0.311690 0.354577i
\(815\) −8389.55 + 26264.2i −0.360581 + 1.12883i
\(816\) 9348.15 + 23114.9i 0.401042 + 0.991644i
\(817\) 11730.4i 0.502321i
\(818\) −5781.87 5082.54i −0.247137 0.217246i
\(819\) 26711.2 6945.36i 1.13964 0.296326i
\(820\) 15307.9 + 2795.46i 0.651920 + 0.119051i
\(821\) −41624.9 −1.76945 −0.884726 0.466111i \(-0.845655\pi\)
−0.884726 + 0.466111i \(0.845655\pi\)
\(822\) −4180.16 + 6190.47i −0.177372 + 0.262673i
\(823\) −15420.0 −0.653106 −0.326553 0.945179i \(-0.605887\pi\)
−0.326553 + 0.945179i \(0.605887\pi\)
\(824\) −7438.50 + 11048.4i −0.314481 + 0.467097i
\(825\) −22106.5 11824.9i −0.932910 0.499017i
\(826\) 40208.9 45741.5i 1.69376 1.92682i
\(827\) −4715.44 −0.198273 −0.0991367 0.995074i \(-0.531608\pi\)
−0.0991367 + 0.995074i \(0.531608\pi\)
\(828\) 22963.5 9250.41i 0.963814 0.388253i
\(829\) 1973.01i 0.0826603i −0.999146 0.0413302i \(-0.986840\pi\)
0.999146 0.0413302i \(-0.0131595\pi\)
\(830\) 4595.14 + 7657.29i 0.192168 + 0.320227i
\(831\) 544.032 + 4254.17i 0.0227103 + 0.177588i
\(832\) 6970.18 + 17167.3i 0.290442 + 0.715347i
\(833\) −34105.3 −1.41858
\(834\) −1122.43 + 1662.23i −0.0466026 + 0.0690146i
\(835\) 4480.37 14026.2i 0.185688 0.581312i
\(836\) 41764.1 5398.98i 1.72780 0.223358i
\(837\) −7436.55 + 2983.85i −0.307103 + 0.123222i
\(838\) −10006.5 + 11383.4i −0.412493 + 0.469250i
\(839\) 3038.49 0.125030 0.0625150 0.998044i \(-0.480088\pi\)
0.0625150 + 0.998044i \(0.480088\pi\)
\(840\) −26539.1 25969.5i −1.09010 1.06671i
\(841\) −12436.7 −0.509931
\(842\) 17765.9 20210.4i 0.727143 0.827193i
\(843\) −27471.9 + 3513.16i −1.12240 + 0.143535i
\(844\) 1235.26 + 9555.39i 0.0503783 + 0.389704i
\(845\) 9451.14 + 3018.98i 0.384768 + 0.122906i
\(846\) 8241.03 16355.6i 0.334908 0.664679i
\(847\) −4486.73 −0.182014
\(848\) 7761.89 + 29519.6i 0.314321 + 1.19541i
\(849\) 5462.22 698.521i 0.220805 0.0282370i
\(850\) 6076.98 + 25802.1i 0.245222 + 1.04118i
\(851\) 11510.4i 0.463657i
\(852\) 5011.51 1310.40i 0.201516 0.0526920i
\(853\) −36888.5 −1.48070 −0.740350 0.672221i \(-0.765340\pi\)
−0.740350 + 0.672221i \(0.765340\pi\)
\(854\) 32431.7 36894.1i 1.29952 1.47833i
\(855\) −41106.3 2254.96i −1.64422 0.0901963i
\(856\) 23728.3 35243.6i 0.947450 1.40724i
\(857\) −31671.9 −1.26242 −0.631209 0.775613i \(-0.717441\pi\)
−0.631209 + 0.775613i \(0.717441\pi\)
\(858\) −17013.2 11488.3i −0.676949 0.457115i
\(859\) −5370.36 −0.213311 −0.106656 0.994296i \(-0.534014\pi\)
−0.106656 + 0.994296i \(0.534014\pi\)
\(860\) 7568.23 + 1382.08i 0.300086 + 0.0548004i
\(861\) −25329.2 + 3239.16i −1.00258 + 0.128212i
\(862\) 28210.0 + 24797.9i 1.11466 + 0.979839i
\(863\) 30609.9i 1.20738i −0.797218 0.603692i \(-0.793696\pi\)
0.797218 0.603692i \(-0.206304\pi\)
\(864\) 2090.84 25310.1i 0.0823287 0.996605i
\(865\) 5833.66 18262.7i 0.229307 0.717863i
\(866\) −17017.4 + 19358.9i −0.667753 + 0.759632i
\(867\) 466.941 + 3651.34i 0.0182908 + 0.143029i
\(868\) 12799.7 1654.66i 0.500520 0.0647039i
\(869\) 22626.7 0.883266
\(870\) 14106.5 11122.9i 0.549719 0.433449i
\(871\) 13838.5i 0.538348i
\(872\) 15646.6 + 10534.3i 0.607639 + 0.409103i
\(873\) −7074.12 27206.4i −0.274253 1.05475i
\(874\) −29188.9 + 33205.1i −1.12967 + 1.28510i
\(875\) −23677.4 31587.1i −0.914792 1.22039i
\(876\) 2815.80 + 10768.8i 0.108604 + 0.415346i
\(877\) −22759.7 −0.876331 −0.438165 0.898894i \(-0.644372\pi\)
−0.438165 + 0.898894i \(0.644372\pi\)
\(878\) 31838.8 36219.6i 1.22381 1.39220i
\(879\) 43676.5 5585.45i 1.67596 0.214326i
\(880\) −1437.32 + 27581.4i −0.0550592 + 1.05655i
\(881\) 28404.1i 1.08622i 0.839662 + 0.543109i \(0.182753\pi\)
−0.839662 + 0.543109i \(0.817247\pi\)
\(882\) 31022.7 + 15631.2i 1.18434 + 0.596747i
\(883\) 17364.5i 0.661790i −0.943668 0.330895i \(-0.892649\pi\)
0.943668 0.330895i \(-0.107351\pi\)
\(884\) 2782.85 + 21526.9i 0.105879 + 0.819035i
\(885\) 43553.3 + 8015.11i 1.65427 + 0.304435i
\(886\) 2876.94 + 2528.96i 0.109089 + 0.0958942i
\(887\) 19856.5i 0.751654i −0.926690 0.375827i \(-0.877359\pi\)
0.926690 0.375827i \(-0.122641\pi\)
\(888\) 10552.1 + 5298.75i 0.398769 + 0.200242i
\(889\) 42851.0 1.61662
\(890\) −16398.7 + 9840.88i −0.617626 + 0.370637i
\(891\) 13706.2 + 24574.4i 0.515347 + 0.923989i
\(892\) −2079.96 16089.7i −0.0780744 0.603949i
\(893\) 32706.1i 1.22561i
\(894\) −143.699 + 212.806i −0.00537586 + 0.00796120i
\(895\) 10714.7 33543.3i 0.400172 1.25277i
\(896\) −13465.4 + 38625.9i −0.502063 + 1.44018i
\(897\) 21377.9 2733.85i 0.795749 0.101762i
\(898\) 35240.3 40089.1i 1.30956 1.48975i
\(899\) 6244.06i 0.231647i
\(900\) 6297.97 26255.2i 0.233258 0.972415i
\(901\) 35757.7i 1.32216i
\(902\) 14265.5 + 12540.1i 0.526596 + 0.462903i
\(903\) −12522.8 + 1601.44i −0.461498 + 0.0590174i
\(904\) 12516.9 18591.4i 0.460517 0.684004i
\(905\) −10450.5 + 32716.3i −0.383854 + 1.20169i
\(906\) −24483.6 16532.7i −0.897805 0.606249i
\(907\) 24108.8i 0.882601i −0.897359 0.441300i \(-0.854517\pi\)
0.897359 0.441300i \(-0.145483\pi\)
\(908\) −1746.38 13509.2i −0.0638279 0.493744i
\(909\) −13394.6 + 3482.82i −0.488746 + 0.127082i
\(910\) −16633.0 27717.1i −0.605911 1.00968i
\(911\) 32678.2 1.18845 0.594224 0.804300i \(-0.297459\pi\)
0.594224 + 0.804300i \(0.297459\pi\)
\(912\) 17003.7 + 42044.6i 0.617380 + 1.52657i
\(913\) 10900.2i 0.395119i
\(914\) −1246.00 + 1417.44i −0.0450918 + 0.0512961i
\(915\) 35129.2 + 6464.82i 1.26922 + 0.233574i
\(916\) −11994.9 + 1550.62i −0.432668 + 0.0559323i
\(917\) 27346.4i 0.984794i
\(918\) 9909.02 28053.2i 0.356260 1.00860i
\(919\) 35471.6i 1.27323i −0.771182 0.636615i \(-0.780334\pi\)
0.771182 0.636615i \(-0.219666\pi\)
\(920\) −17984.2 22744.2i −0.644480 0.815060i
\(921\) 23314.3 2981.48i 0.834128 0.106670i
\(922\) −39501.2 34723.4i −1.41096 1.24030i
\(923\) 4509.46 0.160813
\(924\) −11465.3 43848.0i −0.408204 1.56114i
\(925\) 10228.8 + 7277.33i 0.363592 + 0.258678i
\(926\) −7205.45 6333.94i −0.255708 0.224780i
\(927\) 15381.4 3999.43i 0.544976 0.141703i
\(928\) −17697.8 8856.65i −0.626034 0.313291i
\(929\) 40281.5i 1.42260i −0.702889 0.711299i \(-0.748107\pi\)
0.702889 0.711299i \(-0.251893\pi\)
\(930\) 5810.75 + 7369.45i 0.204884 + 0.259843i
\(931\) −62035.6 −2.18382
\(932\) −5243.00 40557.5i −0.184270 1.42543i
\(933\) −4545.98 35548.1i −0.159516 1.24737i
\(934\) 25359.3 + 22292.1i 0.888418 + 0.780962i
\(935\) −9845.22 + 30821.3i −0.344356 + 1.07803i
\(936\) 7334.93 20856.6i 0.256143 0.728333i
\(937\) 49586.1i 1.72882i 0.502784 + 0.864412i \(0.332309\pi\)
−0.502784 + 0.864412i \(0.667691\pi\)
\(938\) 20171.1 22946.5i 0.702143 0.798754i
\(939\) −30648.6 + 3919.41i −1.06515 + 0.136214i
\(940\) −21101.3 3853.42i −0.732178 0.133707i
\(941\) 13962.8 0.483714 0.241857 0.970312i \(-0.422244\pi\)
0.241857 + 0.970312i \(0.422244\pi\)
\(942\) −9746.16 + 14433.3i −0.337099 + 0.499216i
\(943\) −19940.3 −0.688596
\(944\) −12406.2 47182.4i −0.427739 1.62675i
\(945\) 3204.57 + 44190.7i 0.110312 + 1.52119i
\(946\) 7052.88 + 6199.82i 0.242398 + 0.213080i
\(947\) −49832.8 −1.70998 −0.854989 0.518646i \(-0.826436\pi\)
−0.854989 + 0.518646i \(0.826436\pi\)
\(948\) 6164.49 + 23575.6i 0.211196 + 0.807699i
\(949\) 9689.96i 0.331454i
\(950\) 11053.7 + 46932.5i 0.377504 + 1.60283i
\(951\) −30485.9 + 3898.60i −1.03951 + 0.132935i
\(952\) −26763.2 + 39751.3i −0.911136 + 1.35331i
\(953\) 6247.53 0.212358 0.106179 0.994347i \(-0.466138\pi\)
0.106179 + 0.994347i \(0.466138\pi\)
\(954\) 16388.6 32525.8i 0.556184 1.10384i
\(955\) 15573.3 + 4974.57i 0.527686 + 0.168558i
\(956\) 5014.75 + 38791.9i 0.169653 + 1.31236i
\(957\) 21749.8 2781.41i 0.734661 0.0939501i
\(958\) 13985.9 + 12294.2i 0.471673 + 0.414623i
\(959\) −14356.3 −0.483409
\(960\) −29129.6 + 6016.77i −0.979327 + 0.202282i
\(961\) 26529.0 0.890504
\(962\) 7720.47 + 6786.66i 0.258750 + 0.227454i
\(963\) −49065.7 + 12757.9i −1.64187 + 0.426914i
\(964\) −4040.34 31254.2i −0.134990 1.04422i
\(965\) 5937.22 18586.9i 0.198058 0.620036i
\(966\) 39432.9 + 26627.3i 1.31339 + 0.886874i
\(967\) −2279.95 −0.0758204 −0.0379102 0.999281i \(-0.512070\pi\)
−0.0379102 + 0.999281i \(0.512070\pi\)
\(968\) −2007.28 + 2981.40i −0.0666491 + 0.0989936i
\(969\) 6739.61 + 52701.7i 0.223434 + 1.74719i
\(970\) −28230.9 + 16941.4i −0.934474 + 0.560777i
\(971\) 41890.0i 1.38446i 0.721675 + 0.692232i \(0.243373\pi\)
−0.721675 + 0.692232i \(0.756627\pi\)
\(972\) −21870.8 + 20976.1i −0.721715 + 0.692190i
\(973\) −3854.87 −0.127011
\(974\) 41623.7 + 36589.2i 1.36931 + 1.20369i
\(975\) 11086.5 20726.1i 0.364155 0.680786i
\(976\) −10006.5 38056.3i −0.328178 1.24811i
\(977\) 9928.15 0.325107 0.162554 0.986700i \(-0.448027\pi\)
0.162554 + 0.986700i \(0.448027\pi\)
\(978\) −30037.0 20282.7i −0.982084 0.663159i
\(979\) −23343.7 −0.762070
\(980\) 7309.00 40024.0i 0.238242 1.30461i
\(981\) −5663.96 21783.0i −0.184339 0.708949i
\(982\) 10208.0 11612.5i 0.331721 0.377364i
\(983\) 48280.0i 1.56652i −0.621692 0.783262i \(-0.713554\pi\)
0.621692 0.783262i \(-0.286446\pi\)
\(984\) −9179.41 + 18280.2i −0.297387 + 0.592228i
\(985\) −10.2259 + 32.0131i −0.000330787 + 0.00103555i
\(986\) −17413.0 15306.8i −0.562416 0.494391i
\(987\) 34915.3 4465.04i 1.12600 0.143996i
\(988\) 5061.84 + 39156.1i 0.162995 + 1.26085i
\(989\) −9858.51 −0.316969
\(990\) 23081.4 23523.2i 0.740986 0.755168i
\(991\) 29940.0i 0.959714i −0.877347 0.479857i \(-0.840689\pi\)
0.877347 0.479857i \(-0.159311\pi\)
\(992\) 4626.84 9245.60i 0.148087 0.295915i
\(993\) 2515.62 + 19671.4i 0.0803934 + 0.628652i
\(994\) 7477.42 + 6573.01i 0.238601 + 0.209742i
\(995\) 17386.8 54430.6i 0.553967 1.73424i
\(996\) −11357.3 + 2969.68i −0.361315 + 0.0944759i
\(997\) 18921.6 0.601056 0.300528 0.953773i \(-0.402837\pi\)
0.300528 + 0.953773i \(0.402837\pi\)
\(998\) −8542.42 7509.20i −0.270948 0.238176i
\(999\) −5246.72 13076.2i −0.166165 0.414128i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.4.m.b.59.14 yes 64
3.2 odd 2 inner 120.4.m.b.59.52 yes 64
4.3 odd 2 480.4.m.b.239.29 64
5.4 even 2 inner 120.4.m.b.59.51 yes 64
8.3 odd 2 inner 120.4.m.b.59.16 yes 64
8.5 even 2 480.4.m.b.239.30 64
12.11 even 2 480.4.m.b.239.34 64
15.14 odd 2 inner 120.4.m.b.59.13 64
20.19 odd 2 480.4.m.b.239.35 64
24.5 odd 2 480.4.m.b.239.33 64
24.11 even 2 inner 120.4.m.b.59.50 yes 64
40.19 odd 2 inner 120.4.m.b.59.49 yes 64
40.29 even 2 480.4.m.b.239.36 64
60.59 even 2 480.4.m.b.239.32 64
120.29 odd 2 480.4.m.b.239.31 64
120.59 even 2 inner 120.4.m.b.59.15 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.m.b.59.13 64 15.14 odd 2 inner
120.4.m.b.59.14 yes 64 1.1 even 1 trivial
120.4.m.b.59.15 yes 64 120.59 even 2 inner
120.4.m.b.59.16 yes 64 8.3 odd 2 inner
120.4.m.b.59.49 yes 64 40.19 odd 2 inner
120.4.m.b.59.50 yes 64 24.11 even 2 inner
120.4.m.b.59.51 yes 64 5.4 even 2 inner
120.4.m.b.59.52 yes 64 3.2 odd 2 inner
480.4.m.b.239.29 64 4.3 odd 2
480.4.m.b.239.30 64 8.5 even 2
480.4.m.b.239.31 64 120.29 odd 2
480.4.m.b.239.32 64 60.59 even 2
480.4.m.b.239.33 64 24.5 odd 2
480.4.m.b.239.34 64 12.11 even 2
480.4.m.b.239.35 64 20.19 odd 2
480.4.m.b.239.36 64 40.29 even 2