Properties

Label 120.4.w
Level 120120
Weight 44
Character orbit 120.w
Rep. character χ120(53,)\chi_{120}(53,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 136136
Newform subspaces 33
Sturm bound 9696
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 120=2335 120 = 2^{3} \cdot 3 \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 120.w (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 120 120
Character field: Q(i)\Q(i)
Newform subspaces: 3 3
Sturm bound: 9696
Trace bound: 22
Distinguishing TpT_p: 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M4(120,[χ])M_{4}(120, [\chi]).

Total New Old
Modular forms 152 152 0
Cusp forms 136 136 0
Eisenstein series 16 16 0

Trace form

136q4q68q7+68q1056q124q15+124q16+220q18252q228q25180q28+328q30544q31112q33+460q36136q40536q42+1496q97+O(q100) 136 q - 4 q^{6} - 8 q^{7} + 68 q^{10} - 56 q^{12} - 4 q^{15} + 124 q^{16} + 220 q^{18} - 252 q^{22} - 8 q^{25} - 180 q^{28} + 328 q^{30} - 544 q^{31} - 112 q^{33} + 460 q^{36} - 136 q^{40} - 536 q^{42}+ \cdots - 1496 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(120,[χ])S_{4}^{\mathrm{new}}(120, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
120.4.w.a 120.w 120.w 44 7.0807.080 Q(i,6)\Q(i, \sqrt{6}) Q(6)\Q(\sqrt{-6}) 120.4.w.a 8-8 00 28-28 6868 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(2+2β2)q2β1q38β2q4+q+(-2+2\beta _{2})q^{2}-\beta _{1}q^{3}-8\beta _{2}q^{4}+\cdots
120.4.w.b 120.w 120.w 44 7.0807.080 Q(i,6)\Q(i, \sqrt{6}) Q(6)\Q(\sqrt{-6}) 120.4.w.a 88 00 2828 6868 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(22β2)q2+β1q38β2q4+(7+)q5+q+(2-2\beta _{2})q^{2}+\beta _{1}q^{3}-8\beta _{2}q^{4}+(7+\cdots)q^{5}+\cdots
120.4.w.c 120.w 120.w 128128 7.0807.080 None 120.4.w.c 00 00 00 144-144 SU(2)[C4]\mathrm{SU}(2)[C_{4}]