Properties

Label 1200.2.w
Level $1200$
Weight $2$
Character orbit 1200.w
Rep. character $\chi_{1200}(607,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $36$
Newform subspaces $5$
Sturm bound $480$
Trace bound $41$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1200.w (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(480\)
Trace bound: \(41\)
Distinguishing \(T_p\): \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1200, [\chi])\).

Total New Old
Modular forms 552 36 516
Cusp forms 408 36 372
Eisenstein series 144 0 144

Trace form

\( 36 q - 12 q^{13} - 12 q^{17} + 24 q^{33} + 12 q^{37} + 96 q^{41} + 12 q^{53} - 12 q^{73} + 48 q^{77} - 36 q^{81} - 48 q^{93} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1200.2.w.a 1200.w 20.e $4$ $9.582$ \(\Q(\zeta_{8})\) None 240.2.w.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}^{3}q^{3}+4\zeta_{8}q^{7}-\zeta_{8}^{2}q^{9}+(-4\zeta_{8}+\cdots)q^{11}+\cdots\)
1200.2.w.b 1200.w 20.e $8$ $9.582$ \(\Q(\zeta_{24})\) None 240.2.w.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_{3} q^{3}+(\beta_{4}-2\beta_1)q^{7}-\beta_{2} q^{9}+\cdots\)
1200.2.w.c 1200.w 20.e $8$ $9.582$ \(\Q(\zeta_{24})\) None 1200.2.w.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+2\beta_{3} q^{7}+\beta_{2} q^{9}-\beta_{4} q^{11}+\cdots\)
1200.2.w.d 1200.w 20.e $8$ $9.582$ \(\Q(\zeta_{24})\) None 1200.2.w.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_1 q^{3}+\beta_{5} q^{7}+\beta_{3} q^{9}-2\beta_{4} q^{11}+\cdots\)
1200.2.w.e 1200.w 20.e $8$ $9.582$ \(\Q(\zeta_{24})\) None 1200.2.w.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_1 q^{3}+\beta_{5} q^{7}+\beta_{3} q^{9}+2\beta_{4} q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1200, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)