Defining parameters
Level: | \( N \) | \(=\) | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1200.w (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(41\) | ||
Distinguishing \(T_p\): | \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 552 | 36 | 516 |
Cusp forms | 408 | 36 | 372 |
Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1200, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1200.2.w.a | $4$ | $9.582$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}^{3}q^{3}+4\zeta_{8}q^{7}-\zeta_{8}^{2}q^{9}+(-4\zeta_{8}+\cdots)q^{11}+\cdots\) |
1200.2.w.b | $8$ | $9.582$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_{3} q^{3}+(\beta_{4}-2\beta_1)q^{7}-\beta_{2} q^{9}+\cdots\) |
1200.2.w.c | $8$ | $9.582$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_1 q^{3}+2\beta_{3} q^{7}+\beta_{2} q^{9}-\beta_{4} q^{11}+\cdots\) |
1200.2.w.d | $8$ | $9.582$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_1 q^{3}+\beta_{5} q^{7}+\beta_{3} q^{9}-2\beta_{4} q^{11}+\cdots\) |
1200.2.w.e | $8$ | $9.582$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_1 q^{3}+\beta_{5} q^{7}+\beta_{3} q^{9}+2\beta_{4} q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1200, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)