Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1200, [\chi])\).
|
Total |
New |
Old |
Modular forms
| 1032 |
72 |
960 |
Cusp forms
| 888 |
72 |
816 |
Eisenstein series
| 144 |
0 |
144 |
Label |
Level |
Weight |
Char |
Prim |
Char order |
Dim |
Rel. Dim |
$A$ |
Field |
CM |
Self-dual |
Twist minimal |
Largest |
Maximal |
Minimal twist |
Inner twists |
Rank* |
Traces |
Coefficient ring index |
Sato-Tate |
$q$-expansion |
$a_{2}$ |
$a_{3}$ |
$a_{5}$ |
$a_{7}$ |
1200.3.bg.a |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
150.3.f.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-24\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q-\beta _{1}q^{3}+(-6+6\beta _{2}-\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.b |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
600.3.u.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-16\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{1}q^{3}+(-4+4\beta _{2}+2\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.c |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
600.3.u.b |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-16\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q-\beta _{1}q^{3}+(-4+4\beta _{2}+3\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.d |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
30.3.f.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-16\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q-\beta _{3}q^{3}+(-4+4\beta _{1}-4\beta _{2})q^{7}-3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.e |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
120.3.u.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-12\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{1}q^{3}+(-3+3\beta _{2}-2\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.f |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
600.3.u.c |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-8\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{1}q^{3}+(-2+2\beta _{2}+\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.g |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
75.3.f.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{3}q^{3}+5\beta _{1}q^{7}-3\beta _{2}q^{9}-6q^{11}+\cdots\) |
1200.3.bg.h |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
300.3.k.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{3}q^{3}+2\beta _{1}q^{7}-3\beta _{2}q^{9}-6q^{11}+\cdots\) |
1200.3.bg.i |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
300.3.k.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q-\beta _{3}q^{3}+3\beta _{1}q^{7}-3\beta _{2}q^{9}-6q^{11}+\cdots\) |
1200.3.bg.j |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
75.3.f.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q-\beta _{3}q^{3}+6\beta _{1}q^{7}-3\beta _{2}q^{9}+18q^{11}+\cdots\) |
1200.3.bg.k |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
15.3.f.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(4\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{3}q^{3}+(1+2\beta _{1}+\beta _{2})q^{7}-3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.l |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
600.3.u.c |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(8\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{1}q^{3}+(2-2\beta _{2}+\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.m |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
600.3.u.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(16\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{1}q^{3}+(4-4\beta _{2}+2\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.n |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
600.3.u.b |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(16\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{1}q^{3}+(4-4\beta _{2}-3\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.o |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
60.3.k.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(20\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q-\beta _{1}q^{3}+(5-5\beta _{2}-2\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.p |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$4$ |
$2$ |
$32.698$ |
\(\Q(i, \sqrt{6})\) |
None |
|
|
|
|
150.3.f.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(24\) |
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q-\beta _{1}q^{3}+(6-6\beta _{2}-\beta _{3})q^{7}+3\beta _{2}q^{9}+\cdots\) |
1200.3.bg.q |
$1200$ |
$3$ |
1200.bg |
5.c |
$4$ |
$8$ |
$4$ |
$32.698$ |
\(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
None |
|
|
✓ |
|
120.3.u.b |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(4\) |
$2^{2}\cdot 5^{2}$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{1}q^{3}+(\beta _{3}-\beta _{6})q^{7}-3\beta _{2}q^{9}+(-4+\cdots)q^{11}+\cdots\) |
\( S_{3}^{\mathrm{old}}(1200, [\chi]) \simeq \)
\(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 16}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 10}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 10}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 5}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)