Properties

Label 1200.4.k
Level $1200$
Weight $4$
Character orbit 1200.k
Rep. character $\chi_{1200}(601,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $960$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(960\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1200, [\chi])\).

Total New Old
Modular forms 744 0 744
Cusp forms 696 0 696
Eisenstein series 48 0 48

Decomposition of \(S_{4}^{\mathrm{old}}(1200, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1200, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)