Properties

Label 121.2
Level 121
Weight 2
Dimension 524
Nonzero newspaces 4
Newform subspaces 11
Sturm bound 2420
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 121 = 11^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 11 \)
Sturm bound: \(2420\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(121))\).

Total New Old
Modular forms 685 665 20
Cusp forms 526 524 2
Eisenstein series 159 141 18

Trace form

\( 524 q - 48 q^{2} - 49 q^{3} - 52 q^{4} - 51 q^{5} - 47 q^{6} - 43 q^{7} - 40 q^{8} - 38 q^{9} - 33 q^{10} - 45 q^{11} - 73 q^{12} - 49 q^{13} - 39 q^{14} - 29 q^{15} - 16 q^{16} - 33 q^{17} - 24 q^{18}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
121.2.a \(\chi_{121}(1, \cdot)\) 121.2.a.a 1 1
121.2.a.b 1
121.2.a.c 1
121.2.a.d 1
121.2.c \(\chi_{121}(3, \cdot)\) 121.2.c.a 4 4
121.2.c.b 4
121.2.c.c 4
121.2.c.d 4
121.2.c.e 4
121.2.e \(\chi_{121}(12, \cdot)\) 121.2.e.a 100 10
121.2.g \(\chi_{121}(4, \cdot)\) 121.2.g.a 400 40

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(121))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(121)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 1}\)