Defining parameters
Level: | \( N \) | = | \( 121 = 11^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(2420\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(121))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 685 | 665 | 20 |
Cusp forms | 526 | 524 | 2 |
Eisenstein series | 159 | 141 | 18 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(121))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(121)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 1}\)