Properties

Label 1216.2.s
Level $1216$
Weight $2$
Character orbit 1216.s
Rep. character $\chi_{1216}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $9$
Sturm bound $320$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 9 \)
Sturm bound: \(320\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1216, [\chi])\).

Total New Old
Modular forms 344 80 264
Cusp forms 296 80 216
Eisenstein series 48 0 48

Trace form

\( 80 q + 40 q^{9} + O(q^{10}) \) \( 80 q + 40 q^{9} + 40 q^{25} - 72 q^{41} - 48 q^{49} - 8 q^{57} - 16 q^{73} - 16 q^{81} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1216, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1216.2.s.a 1216.s 152.o $4$ $9.710$ \(\Q(\zeta_{12})\) None 1216.2.s.a \(0\) \(-6\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\zeta_{12}^{2})q^{3}+(-2+\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{5}+\cdots\)
1216.2.s.b 1216.s 152.o $4$ $9.710$ \(\Q(\zeta_{12})\) None 1216.2.s.a \(0\) \(-6\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\zeta_{12}^{2})q^{3}+(2-\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{5}+\cdots\)
1216.2.s.c 1216.s 152.o $4$ $9.710$ \(\Q(\zeta_{12})\) None 1216.2.s.c \(0\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{3}+(-2-2\zeta_{12}^{2})q^{5}+2\zeta_{12}^{3}q^{7}+\cdots\)
1216.2.s.d 1216.s 152.o $4$ $9.710$ \(\Q(\zeta_{12})\) None 1216.2.s.c \(0\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{3}+(2+2\zeta_{12}^{2})q^{5}-2\zeta_{12}^{3}q^{7}+\cdots\)
1216.2.s.e 1216.s 152.o $4$ $9.710$ \(\Q(\zeta_{12})\) None 1216.2.s.a \(0\) \(6\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2-\zeta_{12}^{2})q^{3}+(-2-\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{5}+\cdots\)
1216.2.s.f 1216.s 152.o $4$ $9.710$ \(\Q(\zeta_{12})\) None 1216.2.s.a \(0\) \(6\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{12}^{2})q^{3}+(1-\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{5}+\cdots\)
1216.2.s.g 1216.s 152.o $12$ $9.710$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1216.2.s.g \(0\) \(0\) \(-18\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{9}q^{3}+(-1-\beta _{5})q^{5}+(-\beta _{6}-\beta _{8}+\cdots)q^{7}+\cdots\)
1216.2.s.h 1216.s 152.o $12$ $9.710$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1216.2.s.g \(0\) \(0\) \(18\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{9}q^{3}+(1+\beta _{5})q^{5}+(\beta _{6}+\beta _{8})q^{7}+\cdots\)
1216.2.s.i 1216.s 152.o $32$ $9.710$ None 1216.2.s.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1216, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1216, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(608, [\chi])\)\(^{\oplus 2}\)