Defining parameters
Level: | \( N \) | \(=\) | \( 1216 = 2^{6} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1216.s (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 152 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(320\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1216, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 344 | 80 | 264 |
Cusp forms | 296 | 80 | 216 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1216, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1216, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1216, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(608, [\chi])\)\(^{\oplus 2}\)