Properties

Label 1224.2
Level 1224
Weight 2
Dimension 18070
Nonzero newspaces 30
Sturm bound 165888
Trace bound 10

Downloads

Learn more

Defining parameters

Level: N N = 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k = 2 2
Nonzero newspaces: 30 30
Sturm bound: 165888165888
Trace bound: 1010

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(1224))M_{2}(\Gamma_1(1224)).

Total New Old
Modular forms 43008 18610 24398
Cusp forms 39937 18070 21867
Eisenstein series 3071 540 2531

Trace form

18070q44q258q344q48q548q644q720q8110q996q1014q1136q12+4q1320q1416q1528q1676q17128q18++20q99+O(q100) 18070 q - 44 q^{2} - 58 q^{3} - 44 q^{4} - 8 q^{5} - 48 q^{6} - 44 q^{7} - 20 q^{8} - 110 q^{9} - 96 q^{10} - 14 q^{11} - 36 q^{12} + 4 q^{13} - 20 q^{14} - 16 q^{15} - 28 q^{16} - 76 q^{17} - 128 q^{18}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(1224))S_{2}^{\mathrm{new}}(\Gamma_1(1224))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
1224.2.a χ1224(1,)\chi_{1224}(1, \cdot) 1224.2.a.a 1 1
1224.2.a.b 1
1224.2.a.c 1
1224.2.a.d 1
1224.2.a.e 1
1224.2.a.f 1
1224.2.a.g 1
1224.2.a.h 1
1224.2.a.i 2
1224.2.a.j 2
1224.2.a.k 2
1224.2.a.l 3
1224.2.a.m 3
1224.2.c χ1224(577,)\chi_{1224}(577, \cdot) 1224.2.c.a 2 1
1224.2.c.b 2
1224.2.c.c 2
1224.2.c.d 2
1224.2.c.e 2
1224.2.c.f 2
1224.2.c.g 4
1224.2.c.h 6
1224.2.e χ1224(647,)\chi_{1224}(647, \cdot) None 0 1
1224.2.f χ1224(613,)\chi_{1224}(613, \cdot) 1224.2.f.a 2 1
1224.2.f.b 4
1224.2.f.c 8
1224.2.f.d 8
1224.2.f.e 12
1224.2.f.f 14
1224.2.f.g 16
1224.2.f.h 16
1224.2.h χ1224(611,)\chi_{1224}(611, \cdot) 1224.2.h.a 8 1
1224.2.h.b 8
1224.2.h.c 56
1224.2.j χ1224(35,)\chi_{1224}(35, \cdot) 1224.2.j.a 64 1
1224.2.l χ1224(1189,)\chi_{1224}(1189, \cdot) 1224.2.l.a 4 1
1224.2.l.b 16
1224.2.l.c 18
1224.2.l.d 18
1224.2.l.e 32
1224.2.o χ1224(1223,)\chi_{1224}(1223, \cdot) None 0 1
1224.2.q χ1224(409,)\chi_{1224}(409, \cdot) 1224.2.q.a 2 2
1224.2.q.b 2
1224.2.q.c 2
1224.2.q.d 2
1224.2.q.e 2
1224.2.q.f 8
1224.2.q.g 16
1224.2.q.h 18
1224.2.q.i 20
1224.2.q.j 24
1224.2.r χ1224(251,)\chi_{1224}(251, \cdot) n/a 144 2
1224.2.t χ1224(829,)\chi_{1224}(829, \cdot) n/a 176 2
1224.2.w χ1224(217,)\chi_{1224}(217, \cdot) 1224.2.w.a 2 2
1224.2.w.b 2
1224.2.w.c 2
1224.2.w.d 2
1224.2.w.e 2
1224.2.w.f 2
1224.2.w.g 4
1224.2.w.h 4
1224.2.w.i 6
1224.2.w.j 6
1224.2.w.k 12
1224.2.y χ1224(863,)\chi_{1224}(863, \cdot) None 0 2
1224.2.ba χ1224(407,)\chi_{1224}(407, \cdot) None 0 2
1224.2.bd χ1224(373,)\chi_{1224}(373, \cdot) n/a 424 2
1224.2.bf χ1224(443,)\chi_{1224}(443, \cdot) n/a 384 2
1224.2.bh χ1224(203,)\chi_{1224}(203, \cdot) n/a 424 2
1224.2.bj χ1224(205,)\chi_{1224}(205, \cdot) n/a 384 2
1224.2.bk χ1224(239,)\chi_{1224}(239, \cdot) None 0 2
1224.2.bm χ1224(169,)\chi_{1224}(169, \cdot) n/a 108 2
1224.2.bq χ1224(145,)\chi_{1224}(145, \cdot) 1224.2.bq.a 4 4
1224.2.bq.b 4
1224.2.bq.c 12
1224.2.bq.d 16
1224.2.bq.e 16
1224.2.bq.f 20
1224.2.bq.g 20
1224.2.br χ1224(287,)\chi_{1224}(287, \cdot) None 0 4
1224.2.bs χ1224(253,)\chi_{1224}(253, \cdot) n/a 352 4
1224.2.bt χ1224(179,)\chi_{1224}(179, \cdot) n/a 288 4
1224.2.bx χ1224(625,)\chi_{1224}(625, \cdot) n/a 216 4
1224.2.bz χ1224(47,)\chi_{1224}(47, \cdot) None 0 4
1224.2.ca χ1224(659,)\chi_{1224}(659, \cdot) n/a 848 4
1224.2.cc χ1224(13,)\chi_{1224}(13, \cdot) n/a 848 4
1224.2.cf χ1224(233,)\chi_{1224}(233, \cdot) n/a 144 8
1224.2.cg χ1224(199,)\chi_{1224}(199, \cdot) None 0 8
1224.2.cj χ1224(91,)\chi_{1224}(91, \cdot) n/a 704 8
1224.2.ck χ1224(125,)\chi_{1224}(125, \cdot) n/a 576 8
1224.2.cm χ1224(229,)\chi_{1224}(229, \cdot) n/a 1696 8
1224.2.cn χ1224(59,)\chi_{1224}(59, \cdot) n/a 1696 8
1224.2.cs χ1224(25,)\chi_{1224}(25, \cdot) n/a 432 8
1224.2.ct χ1224(263,)\chi_{1224}(263, \cdot) None 0 8
1224.2.cv χ1224(7,)\chi_{1224}(7, \cdot) None 0 16
1224.2.cw χ1224(41,)\chi_{1224}(41, \cdot) n/a 864 16
1224.2.cz χ1224(5,)\chi_{1224}(5, \cdot) n/a 3392 16
1224.2.da χ1224(139,)\chi_{1224}(139, \cdot) n/a 3392 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(1224))S_{2}^{\mathrm{old}}(\Gamma_1(1224)) into lower level spaces

S2old(Γ1(1224)) S_{2}^{\mathrm{old}}(\Gamma_1(1224)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))18^{\oplus 18}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))16^{\oplus 16}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))6^{\oplus 6}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))8^{\oplus 8}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))8^{\oplus 8}\oplusS2new(Γ1(17))S_{2}^{\mathrm{new}}(\Gamma_1(17))12^{\oplus 12}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))6^{\oplus 6}\oplusS2new(Γ1(24))S_{2}^{\mathrm{new}}(\Gamma_1(24))4^{\oplus 4}\oplusS2new(Γ1(34))S_{2}^{\mathrm{new}}(\Gamma_1(34))9^{\oplus 9}\oplusS2new(Γ1(36))S_{2}^{\mathrm{new}}(\Gamma_1(36))4^{\oplus 4}\oplusS2new(Γ1(51))S_{2}^{\mathrm{new}}(\Gamma_1(51))8^{\oplus 8}\oplusS2new(Γ1(68))S_{2}^{\mathrm{new}}(\Gamma_1(68))6^{\oplus 6}\oplusS2new(Γ1(72))S_{2}^{\mathrm{new}}(\Gamma_1(72))2^{\oplus 2}\oplusS2new(Γ1(102))S_{2}^{\mathrm{new}}(\Gamma_1(102))6^{\oplus 6}\oplusS2new(Γ1(136))S_{2}^{\mathrm{new}}(\Gamma_1(136))3^{\oplus 3}\oplusS2new(Γ1(153))S_{2}^{\mathrm{new}}(\Gamma_1(153))4^{\oplus 4}\oplusS2new(Γ1(204))S_{2}^{\mathrm{new}}(\Gamma_1(204))4^{\oplus 4}\oplusS2new(Γ1(306))S_{2}^{\mathrm{new}}(\Gamma_1(306))3^{\oplus 3}\oplusS2new(Γ1(408))S_{2}^{\mathrm{new}}(\Gamma_1(408))2^{\oplus 2}\oplusS2new(Γ1(612))S_{2}^{\mathrm{new}}(\Gamma_1(612))2^{\oplus 2}