Properties

Label 1224.4.a
Level 12241224
Weight 44
Character orbit 1224.a
Rep. character χ1224(1,)\chi_{1224}(1,\cdot)
Character field Q\Q
Dimension 6060
Newform subspaces 1717
Sturm bound 864864
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1224.a (trivial)
Character field: Q\Q
Newform subspaces: 17 17
Sturm bound: 864864
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(1224))M_{4}(\Gamma_0(1224)).

Total New Old
Modular forms 664 60 604
Cusp forms 632 60 572
Eisenstein series 32 0 32

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22331717FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++86867779798282777575440044
++++--82825577777878557373440044
++-++-81818873737777886969440044
++--++858510107575818110107171440044
-++++-80805575757676557171440044
-++-++84847777778080777373440044
--++++85859976768181997272440044
----81819972727777996868440044
Plus space++340340333330730732432433332912911616001616
Minus space-324324272729729730830827272812811616001616

Trace form

60q+10q5+48q794q1136q13+34q17+248q19180q23+1248q25+258q29136q31+136q35+178q37+260q41196q43+1032q47+3132q49++188q97+O(q100) 60 q + 10 q^{5} + 48 q^{7} - 94 q^{11} - 36 q^{13} + 34 q^{17} + 248 q^{19} - 180 q^{23} + 1248 q^{25} + 258 q^{29} - 136 q^{31} + 136 q^{35} + 178 q^{37} + 260 q^{41} - 196 q^{43} + 1032 q^{47} + 3132 q^{49}+ \cdots + 188 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(1224))S_{4}^{\mathrm{new}}(\Gamma_0(1224)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 17
1224.4.a.a 1224.a 1.a 11 72.21872.218 Q\Q None 408.4.a.a 00 00 6-6 24-24 - - ++ SU(2)\mathrm{SU}(2) q6q524q744q11+6q13+q-6q^{5}-24q^{7}-44q^{11}+6q^{13}+\cdots
1224.4.a.b 1224.a 1.a 11 72.21872.218 Q\Q None 408.4.a.b 00 00 77 44 ++ - ++ SU(2)\mathrm{SU}(2) q+7q5+4q7+21q1152q13+q+7q^{5}+4q^{7}+21q^{11}-5^{2}q^{13}+\cdots
1224.4.a.c 1224.a 1.a 22 72.21872.218 Q(241)\Q(\sqrt{241}) None 408.4.a.c 00 00 7-7 1818 - - - SU(2)\mathrm{SU}(2) q+(3β)q5+(8+2β)q7+(93β)q11+q+(-3-\beta )q^{5}+(8+2\beta )q^{7}+(-9-3\beta )q^{11}+\cdots
1224.4.a.d 1224.a 1.a 22 72.21872.218 Q(3)\Q(\sqrt{3}) None 136.4.a.a 00 00 1212 36-36 - - ++ SU(2)\mathrm{SU}(2) q+(6+2β)q5+(183β)q7+(10+)q11+q+(6+2\beta )q^{5}+(-18-3\beta )q^{7}+(10+\cdots)q^{11}+\cdots
1224.4.a.e 1224.a 1.a 33 72.21872.218 3.3.23321.1 None 408.4.a.g 00 00 5-5 2020 - - ++ SU(2)\mathrm{SU}(2) q+(2β2)q5+(7β1)q7+(9+)q11+q+(-2-\beta _{2})q^{5}+(7-\beta _{1})q^{7}+(-9+\cdots)q^{11}+\cdots
1224.4.a.f 1224.a 1.a 33 72.21872.218 3.3.1556.1 None 136.4.a.c 00 00 2-2 1212 ++ - ++ SU(2)\mathrm{SU}(2) q+(1+β1)q5+(4β1+β2)q7+q+(-1+\beta _{1})q^{5}+(4-\beta _{1}+\beta _{2})q^{7}+\cdots
1224.4.a.g 1224.a 1.a 33 72.21872.218 3.3.12821.1 None 408.4.a.e 00 00 44 2828 - - ++ SU(2)\mathrm{SU}(2) q+(1+β12β2)q5+(9+β1β2)q7+q+(1+\beta _{1}-2\beta _{2})q^{5}+(9+\beta _{1}-\beta _{2})q^{7}+\cdots
1224.4.a.h 1224.a 1.a 33 72.21872.218 3.3.4481.1 None 408.4.a.d 00 00 55 4-4 ++ - - SU(2)\mathrm{SU}(2) q+(1β1β2)q5+(22β1)q7+q+(1-\beta _{1}-\beta _{2})q^{5}+(-2-2\beta _{1})q^{7}+\cdots
1224.4.a.i 1224.a 1.a 33 72.21872.218 3.3.8396.1 None 136.4.a.b 00 00 88 2-2 ++ - - SU(2)\mathrm{SU}(2) q+(3β1+2β2)q5+(23β1β2)q7+q+(3-\beta _{1}+2\beta _{2})q^{5}+(-2-3\beta _{1}-\beta _{2})q^{7}+\cdots
1224.4.a.j 1224.a 1.a 33 72.21872.218 3.3.17717.1 None 408.4.a.f 00 00 1010 22-22 - - - SU(2)\mathrm{SU}(2) q+(3+β1)q5+(8+β1β2)q7+q+(3+\beta _{1})q^{5}+(-8+\beta _{1}-\beta _{2})q^{7}+\cdots
1224.4.a.k 1224.a 1.a 44 72.21872.218 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 408.4.a.h 00 00 10-10 4-4 ++ - ++ SU(2)\mathrm{SU}(2) q+(2+β1)q5+(1β2β3)q7+q+(-2+\beta _{1})q^{5}+(-1-\beta _{2}-\beta _{3})q^{7}+\cdots
1224.4.a.l 1224.a 1.a 44 72.21872.218 4.4.550476.1 None 136.4.a.d 00 00 8-8 22-22 - - - SU(2)\mathrm{SU}(2) q+(1+β1+β2+2β3)q5+(4+)q7+q+(-1+\beta _{1}+\beta _{2}+2\beta _{3})q^{5}+(-4+\cdots)q^{7}+\cdots
1224.4.a.m 1224.a 1.a 44 72.21872.218 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 408.4.a.i 00 00 22 3232 ++ - - SU(2)\mathrm{SU}(2) qβ1q5+(9+β1β2)q7+(15+)q11+q-\beta _{1}q^{5}+(9+\beta _{1}-\beta _{2})q^{7}+(-15+\cdots)q^{11}+\cdots
1224.4.a.n 1224.a 1.a 55 72.21872.218 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 1224.4.a.n 00 00 13-13 2-2 ++ ++ - SU(2)\mathrm{SU}(2) q+(3+β3)q5+β1q7+(1+β22β3+)q11+q+(-3+\beta _{3})q^{5}+\beta _{1}q^{7}+(1+\beta _{2}-2\beta _{3}+\cdots)q^{11}+\cdots
1224.4.a.o 1224.a 1.a 55 72.21872.218 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 1224.4.a.n 00 00 1313 2-2 - ++ ++ SU(2)\mathrm{SU}(2) q+(3β3)q5+β1q7+(1β2+2β3+)q11+q+(3-\beta _{3})q^{5}+\beta _{1}q^{7}+(-1-\beta _{2}+2\beta _{3}+\cdots)q^{11}+\cdots
1224.4.a.p 1224.a 1.a 77 72.21872.218 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 1224.4.a.p 00 00 3-3 2626 ++ ++ ++ SU(2)\mathrm{SU}(2) q+β4q5+(4+β3)q7+(9β2+β4+)q11+q+\beta _{4}q^{5}+(4+\beta _{3})q^{7}+(-9-\beta _{2}+\beta _{4}+\cdots)q^{11}+\cdots
1224.4.a.q 1224.a 1.a 77 72.21872.218 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 1224.4.a.p 00 00 33 2626 - ++ - SU(2)\mathrm{SU}(2) qβ4q5+(4+β3)q7+(9+β2β4+)q11+q-\beta _{4}q^{5}+(4+\beta _{3})q^{7}+(9+\beta _{2}-\beta _{4}+\cdots)q^{11}+\cdots

Decomposition of S4old(Γ0(1224))S_{4}^{\mathrm{old}}(\Gamma_0(1224)) into lower level spaces

S4old(Γ0(1224)) S_{4}^{\mathrm{old}}(\Gamma_0(1224)) \simeq S4new(Γ0(6))S_{4}^{\mathrm{new}}(\Gamma_0(6))12^{\oplus 12}\oplusS4new(Γ0(8))S_{4}^{\mathrm{new}}(\Gamma_0(8))6^{\oplus 6}\oplusS4new(Γ0(9))S_{4}^{\mathrm{new}}(\Gamma_0(9))8^{\oplus 8}\oplusS4new(Γ0(12))S_{4}^{\mathrm{new}}(\Gamma_0(12))8^{\oplus 8}\oplusS4new(Γ0(17))S_{4}^{\mathrm{new}}(\Gamma_0(17))12^{\oplus 12}\oplusS4new(Γ0(18))S_{4}^{\mathrm{new}}(\Gamma_0(18))6^{\oplus 6}\oplusS4new(Γ0(24))S_{4}^{\mathrm{new}}(\Gamma_0(24))4^{\oplus 4}\oplusS4new(Γ0(34))S_{4}^{\mathrm{new}}(\Gamma_0(34))9^{\oplus 9}\oplusS4new(Γ0(36))S_{4}^{\mathrm{new}}(\Gamma_0(36))4^{\oplus 4}\oplusS4new(Γ0(51))S_{4}^{\mathrm{new}}(\Gamma_0(51))8^{\oplus 8}\oplusS4new(Γ0(68))S_{4}^{\mathrm{new}}(\Gamma_0(68))6^{\oplus 6}\oplusS4new(Γ0(72))S_{4}^{\mathrm{new}}(\Gamma_0(72))2^{\oplus 2}\oplusS4new(Γ0(102))S_{4}^{\mathrm{new}}(\Gamma_0(102))6^{\oplus 6}\oplusS4new(Γ0(136))S_{4}^{\mathrm{new}}(\Gamma_0(136))3^{\oplus 3}\oplusS4new(Γ0(153))S_{4}^{\mathrm{new}}(\Gamma_0(153))4^{\oplus 4}\oplusS4new(Γ0(204))S_{4}^{\mathrm{new}}(\Gamma_0(204))4^{\oplus 4}\oplusS4new(Γ0(306))S_{4}^{\mathrm{new}}(\Gamma_0(306))3^{\oplus 3}\oplusS4new(Γ0(408))S_{4}^{\mathrm{new}}(\Gamma_0(408))2^{\oplus 2}\oplusS4new(Γ0(612))S_{4}^{\mathrm{new}}(\Gamma_0(612))2^{\oplus 2}