Properties

Label 12240.2.a.bo
Level 1224012240
Weight 22
Character orbit 12240.a
Self dual yes
Analytic conductor 97.73797.737
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [12240,2,Mod(1,12240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(12240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("12240.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 12240=2432517 12240 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 12240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 97.736892074097.7368920740
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q54q11+6q13+q174q198q23+q25+6q294q31+2q376q41+4q43+4q477q4910q534q55+12q59+6q61+6q65++6q97+O(q100) q + q^{5} - 4 q^{11} + 6 q^{13} + q^{17} - 4 q^{19} - 8 q^{23} + q^{25} + 6 q^{29} - 4 q^{31} + 2 q^{37} - 6 q^{41} + 4 q^{43} + 4 q^{47} - 7 q^{49} - 10 q^{53} - 4 q^{55} + 12 q^{59} + 6 q^{61} + 6 q^{65}+ \cdots + 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
55 1 -1
1717 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.