Defining parameters
Level: | \( N \) | \(=\) | \( 1225 = 5^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1225.k (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(280\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1225, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 328 | 128 | 200 |
Cusp forms | 232 | 112 | 120 |
Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1225, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1225, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)