Defining parameters
Level: | \( N \) | \(=\) | \( 1225 = 5^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1225.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 46 \) | ||
Sturm bound: | \(560\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1225))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 444 | 202 | 242 |
Cusp forms | 396 | 187 | 209 |
Eisenstein series | 48 | 15 | 33 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(45\) |
\(+\) | \(-\) | \(-\) | \(45\) |
\(-\) | \(+\) | \(-\) | \(46\) |
\(-\) | \(-\) | \(+\) | \(51\) |
Plus space | \(+\) | \(96\) | |
Minus space | \(-\) | \(91\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1225))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1225))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1225)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 2}\)