Properties

Label 1225.4.a
Level $1225$
Weight $4$
Character orbit 1225.a
Rep. character $\chi_{1225}(1,\cdot)$
Character field $\Q$
Dimension $187$
Newform subspaces $46$
Sturm bound $560$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 46 \)
Sturm bound: \(560\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1225))\).

Total New Old
Modular forms 444 202 242
Cusp forms 396 187 209
Eisenstein series 48 15 33

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(45\)
\(+\)\(-\)\(-\)\(45\)
\(-\)\(+\)\(-\)\(46\)
\(-\)\(-\)\(+\)\(51\)
Plus space\(+\)\(96\)
Minus space\(-\)\(91\)

Trace form

\( 187 q - 4 q^{3} + 714 q^{4} + 16 q^{6} + 48 q^{8} + 1571 q^{9} - 20 q^{11} - 174 q^{12} + 6 q^{13} + 2650 q^{16} - 116 q^{17} - 232 q^{18} + 80 q^{19} + 44 q^{22} + 196 q^{23} + 180 q^{24} - 264 q^{26}+ \cdots - 1472 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1225))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7
1225.4.a.a 1225.a 1.a $1$ $72.277$ \(\Q\) None 35.4.e.a \(-3\) \(-2\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}-2q^{3}+q^{4}+6q^{6}+21q^{8}+\cdots\)
1225.4.a.b 1225.a 1.a $1$ $72.277$ \(\Q\) None 35.4.e.a \(-3\) \(2\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{2}+2q^{3}+q^{4}-6q^{6}+21q^{8}+\cdots\)
1225.4.a.c 1225.a 1.a $1$ $72.277$ \(\Q\) None 7.4.c.a \(-2\) \(-7\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-7q^{3}-4q^{4}+14q^{6}+24q^{8}+\cdots\)
1225.4.a.d 1225.a 1.a $1$ $72.277$ \(\Q\) None 7.4.c.a \(-2\) \(7\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+7q^{3}-4q^{4}-14q^{6}+24q^{8}+\cdots\)
1225.4.a.e 1225.a 1.a $1$ $72.277$ \(\Q\) None 35.4.a.a \(-1\) \(-8\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-8q^{3}-7q^{4}+8q^{6}+15q^{8}+\cdots\)
1225.4.a.f 1225.a 1.a $1$ $72.277$ \(\Q\) None 245.4.a.b \(-1\) \(-6\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-6q^{3}-7q^{4}+6q^{6}+15q^{8}+\cdots\)
1225.4.a.g 1225.a 1.a $1$ $72.277$ \(\Q\) None 245.4.a.b \(-1\) \(6\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+6q^{3}-7q^{4}-6q^{6}+15q^{8}+\cdots\)
1225.4.a.h 1225.a 1.a $1$ $72.277$ \(\Q\) None 25.4.a.a \(-1\) \(7\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+7q^{3}-7q^{4}-7q^{6}+15q^{8}+\cdots\)
1225.4.a.i 1225.a 1.a $1$ $72.277$ \(\Q\) None 25.4.a.a \(1\) \(-7\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-7q^{3}-7q^{4}-7q^{6}-15q^{8}+\cdots\)
1225.4.a.j 1225.a 1.a $1$ $72.277$ \(\Q\) None 7.4.a.a \(1\) \(-2\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}-7q^{4}-2q^{6}-15q^{8}+\cdots\)
1225.4.a.k 1225.a 1.a $1$ $72.277$ \(\Q\) None 5.4.a.a \(4\) \(2\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2q^{3}+8q^{4}+8q^{6}-23q^{9}+\cdots\)
1225.4.a.l 1225.a 1.a $1$ $72.277$ \(\Q\) \(\Q(\sqrt{-7}) \) 49.4.a.a \(5\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+5q^{2}+17q^{4}+45q^{8}-3^{3}q^{9}-68q^{11}+\cdots\)
1225.4.a.m 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{2}) \) None 35.4.a.b \(-8\) \(2\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4+\beta )q^{2}+(1+4\beta )q^{3}+(10-8\beta )q^{4}+\cdots\)
1225.4.a.n 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{2}) \) None 245.4.b.b \(-6\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{2}-6\beta q^{3}+q^{4}+18\beta q^{6}+21q^{8}+\cdots\)
1225.4.a.o 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{21}) \) \(\Q(\sqrt{-7}) \) 1225.4.a.o \(-5\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+(-2-\beta )q^{2}+(1+5\beta )q^{4}+(-11+\cdots)q^{8}+\cdots\)
1225.4.a.p 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{11}) \) None 245.4.a.i \(-2\) \(-10\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}-5q^{3}+(4-2\beta )q^{4}+\cdots\)
1225.4.a.q 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{11}) \) None 245.4.a.i \(-2\) \(10\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+5q^{3}+(4-2\beta )q^{4}+\cdots\)
1225.4.a.r 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{41}) \) None 175.4.a.d \(-1\) \(-5\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-2-\beta )q^{3}+(2+\beta )q^{4}+(10+\cdots)q^{6}+\cdots\)
1225.4.a.s 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-35}) \) 245.4.b.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q+2\beta q^{3}-8q^{4}+53q^{9}+72q^{11}+\cdots\)
1225.4.a.t 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{41}) \) None 175.4.a.d \(1\) \(5\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(2+\beta )q^{3}+(2+\beta )q^{4}+(10+\cdots)q^{6}+\cdots\)
1225.4.a.u 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{21}) \) \(\Q(\sqrt{-7}) \) 1225.4.a.o \(5\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q+(3-\beta )q^{2}+(6-5\beta )q^{4}+(19-8\beta )q^{8}+\cdots\)
1225.4.a.v 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{2}) \) None 35.4.e.b \(6\) \(-2\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(3+\beta )q^{2}+(-1+3\beta )q^{3}+(3+6\beta )q^{4}+\cdots\)
1225.4.a.w 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{2}) \) None 245.4.b.b \(6\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{2}+6\beta q^{3}+q^{4}+18\beta q^{6}-21q^{8}+\cdots\)
1225.4.a.x 1225.a 1.a $2$ $72.277$ \(\Q(\sqrt{2}) \) None 35.4.e.b \(6\) \(2\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(3+\beta )q^{2}+(1-3\beta )q^{3}+(3+6\beta )q^{4}+\cdots\)
1225.4.a.y 1225.a 1.a $3$ $72.277$ 3.3.14360.1 None 35.4.a.c \(3\) \(2\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+(4+\cdots)q^{4}+\cdots\)
1225.4.a.z 1225.a 1.a $4$ $72.277$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 175.4.a.g \(-4\) \(-3\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1+\beta _{3})q^{3}+(9+\cdots)q^{4}+\cdots\)
1225.4.a.ba 1225.a 1.a $4$ $72.277$ 4.4.23265040.2 None 1225.4.a.ba \(-2\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+\beta _{1}q^{3}+(2-\beta _{2})q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\)
1225.4.a.bb 1225.a 1.a $4$ $72.277$ \(\Q(\sqrt{2}, \sqrt{65})\) None 49.4.a.e \(-2\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+\beta _{2}q^{3}+(9+\beta _{1})q^{4}+\cdots\)
1225.4.a.bc 1225.a 1.a $4$ $72.277$ 4.4.23265040.2 None 1225.4.a.ba \(2\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+\beta _{1}q^{3}+(2-\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{6}+\cdots\)
1225.4.a.bd 1225.a 1.a $4$ $72.277$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 175.4.a.g \(4\) \(3\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-\beta _{3})q^{3}+(9+\beta _{2}+\cdots)q^{4}+\cdots\)
1225.4.a.be 1225.a 1.a $5$ $72.277$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 35.4.b.a \(-4\) \(10\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(2-\beta _{3})q^{3}+(4-\beta _{1}+\cdots)q^{4}+\cdots\)
1225.4.a.bf 1225.a 1.a $5$ $72.277$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 35.4.e.c \(-1\) \(-8\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-2+\beta _{2})q^{3}+(7+\beta _{3})q^{4}+\cdots\)
1225.4.a.bg 1225.a 1.a $5$ $72.277$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 35.4.e.c \(-1\) \(8\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2-\beta _{2})q^{3}+(7+\beta _{3})q^{4}+\cdots\)
1225.4.a.bh 1225.a 1.a $5$ $72.277$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 35.4.b.a \(4\) \(-10\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(-2+\beta _{3})q^{3}+(4-\beta _{1}+\cdots)q^{4}+\cdots\)
1225.4.a.bi 1225.a 1.a $6$ $72.277$ 6.6.1163891200.1 None 245.4.a.o \(2\) \(-16\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-3+\beta _{5})q^{3}+(2+3\beta _{1}+\cdots)q^{4}+\cdots\)
1225.4.a.bj 1225.a 1.a $6$ $72.277$ 6.6.1163891200.1 None 245.4.a.o \(2\) \(16\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(3-\beta _{5})q^{3}+(2+3\beta _{1}+2\beta _{2}+\cdots)q^{4}+\cdots\)
1225.4.a.bk 1225.a 1.a $8$ $72.277$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 175.4.e.e \(-1\) \(-6\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1+\beta _{3})q^{3}+(3+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1225.4.a.bl 1225.a 1.a $8$ $72.277$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 175.4.e.e \(-1\) \(6\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1-\beta _{3})q^{3}+(3+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1225.4.a.bm 1225.a 1.a $8$ $72.277$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 245.4.b.c \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{6}q^{2}-\beta _{4}q^{3}+(9-\beta _{2})q^{4}-\beta _{1}q^{6}+\cdots\)
1225.4.a.bn 1225.a 1.a $8$ $72.277$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 175.4.e.e \(1\) \(-6\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{3})q^{3}+(3+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1225.4.a.bo 1225.a 1.a $8$ $72.277$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 175.4.e.e \(1\) \(6\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{3})q^{3}+(3+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1225.4.a.bp 1225.a 1.a $10$ $72.277$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 35.4.j.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(3+\beta _{2})q^{4}+(-5+\cdots)q^{6}+\cdots\)
1225.4.a.bq 1225.a 1.a $10$ $72.277$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 35.4.j.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(3+\beta _{2})q^{4}+(5+\beta _{2}+\cdots)q^{6}+\cdots\)
1225.4.a.br 1225.a 1.a $12$ $72.277$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1225.4.a.br \(-10\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{2}+\beta _{3}q^{3}+(5-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
1225.4.a.bs 1225.a 1.a $12$ $72.277$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 245.4.b.g \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{5}q^{2}+\beta _{2}q^{3}+(4+\beta _{3})q^{4}+(\beta _{8}+\cdots)q^{6}+\cdots\)
1225.4.a.bt 1225.a 1.a $12$ $72.277$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1225.4.a.br \(10\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{2})q^{2}+\beta _{3}q^{3}+(5-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1225))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1225)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 2}\)