Properties

Label 1232.2.a
Level $1232$
Weight $2$
Character orbit 1232.a
Rep. character $\chi_{1232}(1,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $19$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 19 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1232))\).

Total New Old
Modular forms 204 30 174
Cusp forms 181 30 151
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(+\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(5\)
Plus space\(+\)\(11\)
Minus space\(-\)\(19\)

Trace form

\( 30 q + 4 q^{5} + 30 q^{9} - 6 q^{11} + 4 q^{13} - 4 q^{15} - 4 q^{17} + 16 q^{19} + 12 q^{23} + 26 q^{25} + 12 q^{27} + 4 q^{29} + 16 q^{31} + 20 q^{37} + 24 q^{39} - 4 q^{41} + 20 q^{45} - 12 q^{47} + 30 q^{49}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1232))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 11
1232.2.a.a 1232.a 1.a $1$ $9.838$ \(\Q\) None 77.2.a.c \(0\) \(-2\) \(-2\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{5}+q^{7}+q^{9}-q^{11}+4q^{13}+\cdots\)
1232.2.a.b 1232.a 1.a $1$ $9.838$ \(\Q\) None 616.2.a.e \(0\) \(-2\) \(2\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{5}-q^{7}+q^{9}+q^{11}-4q^{15}+\cdots\)
1232.2.a.c 1232.a 1.a $1$ $9.838$ \(\Q\) None 154.2.a.b \(0\) \(-2\) \(2\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{5}+q^{7}+q^{9}-q^{11}-4q^{13}+\cdots\)
1232.2.a.d 1232.a 1.a $1$ $9.838$ \(\Q\) None 77.2.a.b \(0\) \(-1\) \(3\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{5}-q^{7}-2q^{9}+q^{11}-4q^{13}+\cdots\)
1232.2.a.e 1232.a 1.a $1$ $9.838$ \(\Q\) None 154.2.a.a \(0\) \(0\) \(-4\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}+q^{7}-3q^{9}+q^{11}+2q^{13}+\cdots\)
1232.2.a.f 1232.a 1.a $1$ $9.838$ \(\Q\) None 616.2.a.c \(0\) \(0\) \(-2\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}-q^{7}-3q^{9}+q^{11}+2q^{13}+\cdots\)
1232.2.a.g 1232.a 1.a $1$ $9.838$ \(\Q\) None 616.2.a.d \(0\) \(0\) \(0\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{7}-3q^{9}+q^{11}-6q^{13}+2q^{19}+\cdots\)
1232.2.a.h 1232.a 1.a $1$ $9.838$ \(\Q\) None 154.2.a.c \(0\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+q^{7}-3q^{9}+q^{11}+2q^{13}+\cdots\)
1232.2.a.i 1232.a 1.a $1$ $9.838$ \(\Q\) None 616.2.a.b \(0\) \(1\) \(-1\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-q^{7}-2q^{9}-q^{11}-q^{15}+\cdots\)
1232.2.a.j 1232.a 1.a $1$ $9.838$ \(\Q\) None 308.2.a.a \(0\) \(1\) \(-1\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{7}-2q^{9}-q^{11}-4q^{13}+\cdots\)
1232.2.a.k 1232.a 1.a $1$ $9.838$ \(\Q\) None 616.2.a.a \(0\) \(2\) \(2\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+2q^{5}-q^{7}+q^{9}+q^{11}+4q^{13}+\cdots\)
1232.2.a.l 1232.a 1.a $1$ $9.838$ \(\Q\) None 77.2.a.a \(0\) \(3\) \(-1\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-q^{5}+q^{7}+6q^{9}+q^{11}-4q^{13}+\cdots\)
1232.2.a.m 1232.a 1.a $2$ $9.838$ \(\Q(\sqrt{5}) \) None 77.2.a.d \(0\) \(-2\) \(-4\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}-2q^{5}-q^{7}+(3+2\beta )q^{9}+\cdots\)
1232.2.a.n 1232.a 1.a $2$ $9.838$ \(\Q(\sqrt{6}) \) None 308.2.a.b \(0\) \(0\) \(4\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+2q^{5}+q^{7}+3q^{9}+q^{11}+\cdots\)
1232.2.a.o 1232.a 1.a $2$ $9.838$ \(\Q(\sqrt{17}) \) None 616.2.a.f \(0\) \(1\) \(-3\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-2+\beta )q^{5}+q^{7}+(1+\beta )q^{9}+\cdots\)
1232.2.a.p 1232.a 1.a $2$ $9.838$ \(\Q(\sqrt{5}) \) None 154.2.a.d \(0\) \(2\) \(2\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(1+\beta )q^{5}-q^{7}+(3+2\beta )q^{9}+\cdots\)
1232.2.a.q 1232.a 1.a $3$ $9.838$ 3.3.229.1 None 616.2.a.g \(0\) \(-1\) \(1\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}-\beta _{2}q^{5}-q^{7}+(1-\beta _{1})q^{9}+\cdots\)
1232.2.a.r 1232.a 1.a $3$ $9.838$ 3.3.1016.1 None 308.2.a.c \(0\) \(1\) \(-1\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-\beta _{1}-\beta _{2})q^{5}-q^{7}+(1+\cdots)q^{9}+\cdots\)
1232.2.a.s 1232.a 1.a $4$ $9.838$ 4.4.11348.1 None 616.2.a.h \(0\) \(-1\) \(5\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+(1-\beta _{1})q^{5}+q^{7}+(2+\beta _{2}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1232))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1232)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(308))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(616))\)\(^{\oplus 2}\)