Defining parameters
Level: | \( N \) | \(=\) | \( 1232 = 2^{4} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1232.bi (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 308 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1232, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 408 | 96 | 312 |
Cusp forms | 360 | 96 | 264 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1232, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1232.2.bi.a | $32$ | $9.838$ | None | \(0\) | \(0\) | \(-2\) | \(0\) | ||
1232.2.bi.b | $32$ | $9.838$ | None | \(0\) | \(0\) | \(-2\) | \(0\) | ||
1232.2.bi.c | $32$ | $9.838$ | None | \(0\) | \(0\) | \(4\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1232, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1232, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 3}\)