Properties

Label 1232.4.bi
Level $1232$
Weight $4$
Character orbit 1232.bi
Rep. character $\chi_{1232}(527,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $288$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.bi (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 308 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1232, [\chi])\).

Total New Old
Modular forms 1176 288 888
Cusp forms 1128 288 840
Eisenstein series 48 0 48

Trace form

\( 288 q + 1296 q^{9} - 4104 q^{25} + 36 q^{33} + 1848 q^{49} - 1176 q^{53} - 6240 q^{69} + 2568 q^{77} - 11664 q^{81} + 5136 q^{89} + 3072 q^{93} - 4464 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1232, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1232, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1232, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 3}\)