Defining parameters
Level: | \( N \) | \(=\) | \( 1232 = 2^{4} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1232.cm (of order \(15\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q(\zeta_{15})\) | ||
Sturm bound: | \(768\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1232, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4704 | 1168 | 3536 |
Cusp forms | 4512 | 1136 | 3376 |
Eisenstein series | 192 | 32 | 160 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1232, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1232, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1232, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(616, [\chi])\)\(^{\oplus 2}\)