Properties

Label 1232.4.cm
Level $1232$
Weight $4$
Character orbit 1232.cm
Rep. character $\chi_{1232}(81,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $1136$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.cm (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{15})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1232, [\chi])\).

Total New Old
Modular forms 4704 1168 3536
Cusp forms 4512 1136 3376
Eisenstein series 192 32 160

Trace form

\( 1136 q + 3 q^{3} - 3 q^{5} + 6 q^{7} + 1239 q^{9} + 14 q^{11} - 12 q^{13} + 120 q^{15} - 3 q^{17} + 231 q^{19} - 70 q^{21} + 88 q^{23} + 3515 q^{25} + 120 q^{27} - 412 q^{29} + 3 q^{31} - 70 q^{33} - 788 q^{35}+ \cdots + 10156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1232, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1232, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1232, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(616, [\chi])\)\(^{\oplus 2}\)