Defining parameters
Level: | \( N \) | \(=\) | \( 1248 = 2^{5} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1248.ca (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(448\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 480 | 56 | 424 |
Cusp forms | 416 | 56 | 360 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1248.2.ca.a | $8$ | $9.965$ | 8.0.12960000.1 | None | \(0\) | \(0\) | \(0\) | \(-12\) | \(q-\beta _{1}q^{3}+\beta _{3}q^{5}+(-1-\beta _{2}+\beta _{4}+\cdots)q^{7}+\cdots\) |
1248.2.ca.b | $48$ | $9.965$ | None | \(0\) | \(0\) | \(0\) | \(12\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)