Properties

Label 1248.2.ca
Level $1248$
Weight $2$
Character orbit 1248.ca
Rep. character $\chi_{1248}(49,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $56$
Newform subspaces $2$
Sturm bound $448$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.ca (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(448\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).

Total New Old
Modular forms 480 56 424
Cusp forms 416 56 360
Eisenstein series 64 0 64

Trace form

\( 56 q + 28 q^{9} + 4 q^{17} + 48 q^{25} + 12 q^{41} + 20 q^{49} + 48 q^{55} + 12 q^{65} + 80 q^{79} - 28 q^{81} + 24 q^{87} + 40 q^{95} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1248.2.ca.a 1248.ca 104.s $8$ $9.965$ 8.0.12960000.1 None 312.2.bk.a \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{3}+\beta _{3}q^{5}+(-1-\beta _{2}+\beta _{4}+\cdots)q^{7}+\cdots\)
1248.2.ca.b 1248.ca 104.s $48$ $9.965$ None 312.2.bk.b \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)