Properties

Label 1248.2.j
Level $1248$
Weight $2$
Character orbit 1248.j
Rep. character $\chi_{1248}(911,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $1$
Sturm bound $448$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(448\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).

Total New Old
Modular forms 240 48 192
Cusp forms 208 48 160
Eisenstein series 32 0 32

Trace form

\( 48 q + O(q^{10}) \) \( 48 q + 16 q^{19} + 48 q^{25} - 8 q^{33} - 16 q^{43} - 48 q^{49} - 40 q^{51} - 8 q^{57} + 64 q^{67} + 56 q^{75} + 24 q^{81} + 16 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1248.2.j.a 1248.j 24.f $48$ $9.965$ None 312.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 3}\)