Properties

Label 1254.2.bo
Level $1254$
Weight $2$
Character orbit 1254.bo
Rep. character $\chi_{1254}(25,\cdot)$
Character field $\Q(\zeta_{45})$
Dimension $960$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1254 = 2 \cdot 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1254.bo (of order \(45\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 209 \)
Character field: \(\Q(\zeta_{45})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1254, [\chi])\).

Total New Old
Modular forms 5952 960 4992
Cusp forms 5568 960 4608
Eisenstein series 384 0 384

Trace form

\( 960 q + 36 q^{7} - 12 q^{11} - 72 q^{14} + 48 q^{15} + 36 q^{17} + 48 q^{20} - 24 q^{22} - 36 q^{25} + 24 q^{26} - 72 q^{29} + 12 q^{31} - 12 q^{33} + 48 q^{34} - 24 q^{35} - 24 q^{37} - 12 q^{38} + 36 q^{41}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1254, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1254, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1254, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(418, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(627, [\chi])\)\(^{\oplus 2}\)