Defining parameters
Level: | \( N \) | \(=\) | \( 1254 = 2 \cdot 3 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1254.bo (of order \(45\) and degree \(24\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 209 \) |
Character field: | \(\Q(\zeta_{45})\) | ||
Sturm bound: | \(480\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1254, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5952 | 960 | 4992 |
Cusp forms | 5568 | 960 | 4608 |
Eisenstein series | 384 | 0 | 384 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1254, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1254, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1254, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(418, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(627, [\chi])\)\(^{\oplus 2}\)