Properties

Label 126.3
Level 126
Weight 3
Dimension 216
Nonzero newspaces 10
Newform subspaces 14
Sturm bound 2592
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 14 \)
Sturm bound: \(2592\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(126))\).

Total New Old
Modular forms 960 216 744
Cusp forms 768 216 552
Eisenstein series 192 0 192

Trace form

\( 216 q - 4 q^{4} + 30 q^{5} + 24 q^{6} + 14 q^{7} - 24 q^{9} - 18 q^{11} - 24 q^{12} + 44 q^{13} + 72 q^{14} + 84 q^{15} + 24 q^{16} + 186 q^{17} + 96 q^{18} + 206 q^{19} + 72 q^{20} + 6 q^{21} + 48 q^{22}+ \cdots - 156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(126))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
126.3.b \(\chi_{126}(71, \cdot)\) 126.3.b.a 4 1
126.3.c \(\chi_{126}(55, \cdot)\) 126.3.c.a 4 1
126.3.c.b 4
126.3.i \(\chi_{126}(65, \cdot)\) 126.3.i.a 32 2
126.3.j \(\chi_{126}(31, \cdot)\) 126.3.j.a 32 2
126.3.n \(\chi_{126}(19, \cdot)\) 126.3.n.a 4 2
126.3.n.b 4
126.3.n.c 4
126.3.o \(\chi_{126}(13, \cdot)\) 126.3.o.a 32 2
126.3.p \(\chi_{126}(103, \cdot)\) 126.3.p.a 32 2
126.3.q \(\chi_{126}(29, \cdot)\) 126.3.q.a 24 2
126.3.r \(\chi_{126}(11, \cdot)\) 126.3.r.a 32 2
126.3.s \(\chi_{126}(53, \cdot)\) 126.3.s.a 4 2
126.3.s.b 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(126))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(126)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)