Defining parameters
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.t (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(126, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 248 | 80 | 168 |
Cusp forms | 232 | 80 | 152 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(126, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
126.6.t.a | $80$ | $20.208$ | None | \(0\) | \(0\) | \(0\) | \(58\) |
Decomposition of \(S_{6}^{\mathrm{old}}(126, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(126, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)