Defining parameters
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.br (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1260 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1260, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 24 | 0 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 16 | 16 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1260, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1260.1.br.a | $4$ | $0.629$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\zeta_{12}^{3}q^{2}+\zeta_{12}^{5}q^{3}-q^{4}-\zeta_{12}^{2}q^{5}+\cdots\) |
1260.1.br.b | $4$ | $0.629$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+\zeta_{12}^{3}q^{2}-\zeta_{12}q^{3}-q^{4}+\zeta_{12}^{2}q^{5}+\cdots\) |