Properties

Label 1260.2.cs
Level $1260$
Weight $2$
Character orbit 1260.cs
Rep. character $\chi_{1260}(391,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $384$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.cs (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 252 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1260, [\chi])\).

Total New Old
Modular forms 592 384 208
Cusp forms 560 384 176
Eisenstein series 32 0 32

Trace form

\( 384 q - 10 q^{14} + 20 q^{18} + 4 q^{21} + 192 q^{25} + 8 q^{29} + 40 q^{32} - 80 q^{36} + 22 q^{42} + 88 q^{44} - 26 q^{56} - 28 q^{60} + 12 q^{72} - 84 q^{74} - 16 q^{77} + 12 q^{78} + 40 q^{81} - 38 q^{84}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1260, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1260, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1260, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)