Defining parameters
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.dq (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1260, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1248 | 80 | 1168 |
Cusp forms | 1056 | 80 | 976 |
Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1260, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1260.2.dq.a | $16$ | $10.061$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-6\) | \(2\) | \(q+(-2\beta _{1}-\beta _{3}-\beta _{5}-\beta _{6}-\beta _{10}+\beta _{11}+\cdots)q^{5}+\cdots\) |
1260.2.dq.b | $32$ | $10.061$ | None | \(0\) | \(0\) | \(0\) | \(-8\) | ||
1260.2.dq.c | $32$ | $10.061$ | None | \(0\) | \(0\) | \(12\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1260, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1260, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(630, [\chi])\)\(^{\oplus 2}\)