Properties

Label 1260.2.dq
Level $1260$
Weight $2$
Character orbit 1260.dq
Rep. character $\chi_{1260}(73,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $80$
Newform subspaces $3$
Sturm bound $576$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.dq (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(576\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1260, [\chi])\).

Total New Old
Modular forms 1248 80 1168
Cusp forms 1056 80 976
Eisenstein series 192 0 192

Trace form

\( 80 q + 6 q^{5} - 6 q^{7} - 8 q^{11} - 18 q^{17} - 10 q^{25} - 12 q^{31} + 20 q^{35} + 2 q^{37} + 12 q^{43} - 6 q^{47} - 30 q^{53} + 12 q^{61} + 18 q^{65} - 24 q^{67} + 24 q^{71} - 42 q^{73} + 74 q^{77}+ \cdots + 34 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1260, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1260.2.dq.a 1260.dq 35.k $16$ $10.061$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 140.2.u.a \(0\) \(0\) \(-6\) \(2\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-2\beta _{1}-\beta _{3}-\beta _{5}-\beta _{6}-\beta _{10}+\beta _{11}+\cdots)q^{5}+\cdots\)
1260.2.dq.b 1260.dq 35.k $32$ $10.061$ None 1260.2.dq.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$
1260.2.dq.c 1260.dq 35.k $32$ $10.061$ None 420.2.bo.a \(0\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1260, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1260, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(630, [\chi])\)\(^{\oplus 2}\)