Properties

Label 1260.2.dq
Level 12601260
Weight 22
Character orbit 1260.dq
Rep. character χ1260(73,)\chi_{1260}(73,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 8080
Newform subspaces 33
Sturm bound 576576
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1260=223257 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1260.dq (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 35 35
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 3 3
Sturm bound: 576576
Trace bound: 55
Distinguishing TpT_p: 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(1260,[χ])M_{2}(1260, [\chi]).

Total New Old
Modular forms 1248 80 1168
Cusp forms 1056 80 976
Eisenstein series 192 0 192

Trace form

80q+6q56q78q1118q1710q2512q31+20q35+2q37+12q436q4730q53+12q61+18q6524q67+24q7142q73+74q77++34q95+O(q100) 80 q + 6 q^{5} - 6 q^{7} - 8 q^{11} - 18 q^{17} - 10 q^{25} - 12 q^{31} + 20 q^{35} + 2 q^{37} + 12 q^{43} - 6 q^{47} - 30 q^{53} + 12 q^{61} + 18 q^{65} - 24 q^{67} + 24 q^{71} - 42 q^{73} + 74 q^{77}+ \cdots + 34 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1260,[χ])S_{2}^{\mathrm{new}}(1260, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1260.2.dq.a 1260.dq 35.k 1616 10.06110.061 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 140.2.u.a 00 00 6-6 22 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(2β1β3β5β6β10+β11+)q5+q+(-2\beta _{1}-\beta _{3}-\beta _{5}-\beta _{6}-\beta _{10}+\beta _{11}+\cdots)q^{5}+\cdots
1260.2.dq.b 1260.dq 35.k 3232 10.06110.061 None 1260.2.dq.b 00 00 00 8-8 SU(2)[C12]\mathrm{SU}(2)[C_{12}]
1260.2.dq.c 1260.dq 35.k 3232 10.06110.061 None 420.2.bo.a 00 00 1212 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}]

Decomposition of S2old(1260,[χ])S_{2}^{\mathrm{old}}(1260, [\chi]) into lower level spaces