Properties

Label 1260.2.dx
Level $1260$
Weight $2$
Character orbit 1260.dx
Rep. character $\chi_{1260}(143,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $384$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.dx (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 420 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1260, [\chi])\).

Total New Old
Modular forms 1216 384 832
Cusp forms 1088 384 704
Eisenstein series 128 0 128

Trace form

\( 384 q + 64 q^{28} + 120 q^{40} + 80 q^{58} + 8 q^{70} + 120 q^{82} - 48 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1260, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1260, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1260, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)