Properties

Label 1260.4
Level 1260
Weight 4
Dimension 50202
Nonzero newspaces 60
Sturm bound 331776
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 60 \)
Sturm bound: \(331776\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1260))\).

Total New Old
Modular forms 126336 50738 75598
Cusp forms 122496 50202 72294
Eisenstein series 3840 536 3304

Trace form

\( 50202 q - 18 q^{2} - 12 q^{3} + 34 q^{4} - 44 q^{5} + 44 q^{6} - 28 q^{7} - 42 q^{8} + 36 q^{9} - 196 q^{10} + 332 q^{11} - 32 q^{12} + 396 q^{13} + 150 q^{14} - 144 q^{15} + 814 q^{16} + 80 q^{17} - 424 q^{18}+ \cdots - 2408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1260))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1260.4.a \(\chi_{1260}(1, \cdot)\) 1260.4.a.a 1 1
1260.4.a.b 1
1260.4.a.c 1
1260.4.a.d 1
1260.4.a.e 1
1260.4.a.f 1
1260.4.a.g 1
1260.4.a.h 1
1260.4.a.i 1
1260.4.a.j 1
1260.4.a.k 1
1260.4.a.l 1
1260.4.a.m 2
1260.4.a.n 2
1260.4.a.o 2
1260.4.a.p 3
1260.4.a.q 3
1260.4.a.r 3
1260.4.a.s 3
1260.4.c \(\chi_{1260}(811, \cdot)\) n/a 240 1
1260.4.d \(\chi_{1260}(881, \cdot)\) 1260.4.d.a 16 1
1260.4.d.b 16
1260.4.f \(\chi_{1260}(629, \cdot)\) 1260.4.f.a 48 1
1260.4.i \(\chi_{1260}(559, \cdot)\) n/a 356 1
1260.4.k \(\chi_{1260}(1009, \cdot)\) 1260.4.k.a 2 1
1260.4.k.b 2
1260.4.k.c 2
1260.4.k.d 4
1260.4.k.e 6
1260.4.k.f 12
1260.4.k.g 16
1260.4.l \(\chi_{1260}(1079, \cdot)\) n/a 216 1
1260.4.n \(\chi_{1260}(71, \cdot)\) n/a 144 1
1260.4.q \(\chi_{1260}(121, \cdot)\) n/a 192 2
1260.4.r \(\chi_{1260}(421, \cdot)\) n/a 144 2
1260.4.s \(\chi_{1260}(361, \cdot)\) 1260.4.s.a 2 2
1260.4.s.b 2
1260.4.s.c 2
1260.4.s.d 4
1260.4.s.e 4
1260.4.s.f 4
1260.4.s.g 6
1260.4.s.h 8
1260.4.s.i 8
1260.4.s.j 8
1260.4.s.k 16
1260.4.s.l 16
1260.4.t \(\chi_{1260}(961, \cdot)\) n/a 192 2
1260.4.v \(\chi_{1260}(197, \cdot)\) 1260.4.v.a 36 2
1260.4.v.b 36
1260.4.w \(\chi_{1260}(127, \cdot)\) n/a 540 2
1260.4.z \(\chi_{1260}(503, \cdot)\) n/a 576 2
1260.4.ba \(\chi_{1260}(433, \cdot)\) n/a 120 2
1260.4.bc \(\chi_{1260}(439, \cdot)\) n/a 1712 2
1260.4.bf \(\chi_{1260}(689, \cdot)\) n/a 288 2
1260.4.bh \(\chi_{1260}(941, \cdot)\) n/a 192 2
1260.4.bi \(\chi_{1260}(31, \cdot)\) n/a 1152 2
1260.4.bl \(\chi_{1260}(179, \cdot)\) n/a 576 2
1260.4.bm \(\chi_{1260}(109, \cdot)\) n/a 120 2
1260.4.bo \(\chi_{1260}(491, \cdot)\) n/a 864 2
1260.4.bs \(\chi_{1260}(11, \cdot)\) n/a 1152 2
1260.4.bv \(\chi_{1260}(169, \cdot)\) n/a 216 2
1260.4.bx \(\chi_{1260}(779, \cdot)\) n/a 1712 2
1260.4.by \(\chi_{1260}(529, \cdot)\) n/a 288 2
1260.4.ca \(\chi_{1260}(239, \cdot)\) n/a 1296 2
1260.4.ce \(\chi_{1260}(431, \cdot)\) n/a 384 2
1260.4.cg \(\chi_{1260}(341, \cdot)\) 1260.4.cg.a 32 2
1260.4.cg.b 32
1260.4.ch \(\chi_{1260}(271, \cdot)\) n/a 480 2
1260.4.cj \(\chi_{1260}(209, \cdot)\) n/a 288 2
1260.4.cl \(\chi_{1260}(619, \cdot)\) n/a 1712 2
1260.4.co \(\chi_{1260}(509, \cdot)\) n/a 288 2
1260.4.cq \(\chi_{1260}(139, \cdot)\) n/a 1712 2
1260.4.cs \(\chi_{1260}(391, \cdot)\) n/a 1152 2
1260.4.cu \(\chi_{1260}(101, \cdot)\) n/a 192 2
1260.4.cv \(\chi_{1260}(871, \cdot)\) n/a 1152 2
1260.4.cx \(\chi_{1260}(41, \cdot)\) n/a 192 2
1260.4.cz \(\chi_{1260}(19, \cdot)\) n/a 712 2
1260.4.dc \(\chi_{1260}(89, \cdot)\) 1260.4.dc.a 96 2
1260.4.df \(\chi_{1260}(191, \cdot)\) n/a 1152 2
1260.4.dh \(\chi_{1260}(599, \cdot)\) n/a 1712 2
1260.4.di \(\chi_{1260}(709, \cdot)\) n/a 288 2
1260.4.dl \(\chi_{1260}(67, \cdot)\) n/a 3424 4
1260.4.dm \(\chi_{1260}(317, \cdot)\) n/a 576 4
1260.4.do \(\chi_{1260}(83, \cdot)\) n/a 3424 4
1260.4.dq \(\chi_{1260}(73, \cdot)\) n/a 240 4
1260.4.ds \(\chi_{1260}(493, \cdot)\) n/a 576 4
1260.4.dv \(\chi_{1260}(227, \cdot)\) n/a 3424 4
1260.4.dx \(\chi_{1260}(143, \cdot)\) n/a 1152 4
1260.4.dz \(\chi_{1260}(13, \cdot)\) n/a 576 4
1260.4.ea \(\chi_{1260}(113, \cdot)\) n/a 432 4
1260.4.ec \(\chi_{1260}(163, \cdot)\) n/a 1424 4
1260.4.ee \(\chi_{1260}(247, \cdot)\) n/a 3424 4
1260.4.eh \(\chi_{1260}(137, \cdot)\) n/a 576 4
1260.4.ej \(\chi_{1260}(53, \cdot)\) n/a 192 4
1260.4.el \(\chi_{1260}(43, \cdot)\) n/a 2592 4
1260.4.en \(\chi_{1260}(157, \cdot)\) n/a 576 4
1260.4.eo \(\chi_{1260}(47, \cdot)\) n/a 3424 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1260))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1260)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 36}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(105))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(315))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(420))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(630))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1260))\)\(^{\oplus 1}\)