Defining parameters
Level: | \( N \) | \(=\) | \( 128 = 2^{7} \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 128.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(128))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 44 | 140 |
Cusp forms | 168 | 44 | 124 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(23\) |
\(-\) | \(21\) |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(128))\) into newform subspaces
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(128))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(128)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)