Properties

Label 128.12.a
Level $128$
Weight $12$
Character orbit 128.a
Rep. character $\chi_{128}(1,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $8$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 128.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(128))\).

Total New Old
Modular forms 184 44 140
Cusp forms 168 44 124
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)Dim
\(+\)\(23\)
\(-\)\(21\)

Trace form

\( 44 q + 2598156 q^{9} - 10558936 q^{17} + 498051892 q^{25} - 220346032 q^{33} - 75332936 q^{41} + 12483953868 q^{49} + 3136866608 q^{57} + 4481721008 q^{65} - 30994859864 q^{73} + 108991885788 q^{81} - 328754480024 q^{89}+ \cdots + 580166463656 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(128))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
128.12.a.a 128.a 1.a $5$ $98.348$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 128.12.a.a \(0\) \(-506\) \(-4446\) \(17860\) $-$ $\mathrm{SU}(2)$ \(q+(-101+\beta _{1})q^{3}+(-888+5\beta _{1}+\cdots)q^{5}+\cdots\)
128.12.a.b 128.a 1.a $5$ $98.348$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 128.12.a.a \(0\) \(-506\) \(4446\) \(-17860\) $-$ $\mathrm{SU}(2)$ \(q+(-101+\beta _{1})q^{3}+(888-5\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\)
128.12.a.c 128.a 1.a $5$ $98.348$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 128.12.a.a \(0\) \(506\) \(-4446\) \(-17860\) $-$ $\mathrm{SU}(2)$ \(q+(101-\beta _{1})q^{3}+(-888+5\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)
128.12.a.d 128.a 1.a $5$ $98.348$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 128.12.a.a \(0\) \(506\) \(4446\) \(17860\) $+$ $\mathrm{SU}(2)$ \(q+(101-\beta _{1})q^{3}+(888-5\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\)
128.12.a.e 128.a 1.a $6$ $98.348$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 128.12.a.e \(0\) \(-20\) \(-1804\) \(49368\) $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{3}+(-299-4\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
128.12.a.f 128.a 1.a $6$ $98.348$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 128.12.a.e \(0\) \(-20\) \(1804\) \(-49368\) $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{3}+(299+4\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
128.12.a.g 128.a 1.a $6$ $98.348$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 128.12.a.e \(0\) \(20\) \(-1804\) \(-49368\) $-$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{3}+(-299-4\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
128.12.a.h 128.a 1.a $6$ $98.348$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 128.12.a.e \(0\) \(20\) \(1804\) \(49368\) $+$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{3}+(299+4\beta _{1}-\beta _{2})q^{5}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(128))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(128)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)