Properties

Label 128.5
Level 128
Weight 5
Dimension 1128
Nonzero newspaces 5
Newform subspaces 10
Sturm bound 5120
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 128 = 2^{7} \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 10 \)
Sturm bound: \(5120\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(128))\).

Total New Old
Modular forms 2128 1176 952
Cusp forms 1968 1128 840
Eisenstein series 160 48 112

Trace form

\( 1128 q - 16 q^{2} - 12 q^{3} - 16 q^{4} - 16 q^{5} - 16 q^{6} - 12 q^{7} - 16 q^{8} - 20 q^{9} - 16 q^{10} - 12 q^{11} - 16 q^{12} - 16 q^{13} - 16 q^{14} - 8 q^{15} - 16 q^{16} - 24 q^{17} - 16 q^{18}+ \cdots + 46904 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(128))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
128.5.c \(\chi_{128}(127, \cdot)\) 128.5.c.a 8 1
128.5.c.b 8
128.5.d \(\chi_{128}(63, \cdot)\) 128.5.d.a 2 1
128.5.d.b 2
128.5.d.c 4
128.5.d.d 8
128.5.f \(\chi_{128}(31, \cdot)\) 128.5.f.a 14 2
128.5.f.b 14
128.5.h \(\chi_{128}(15, \cdot)\) 128.5.h.a 60 4
128.5.j \(\chi_{128}(7, \cdot)\) None 0 8
128.5.l \(\chi_{128}(3, \cdot)\) 128.5.l.a 1008 16

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(128))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(128)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 7}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 1}\)