Defining parameters
Level: | \( N \) | = | \( 128 = 2^{7} \) |
Weight: | \( k \) | = | \( 5 \) |
Nonzero newspaces: | \( 5 \) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(5120\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(128))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2128 | 1176 | 952 |
Cusp forms | 1968 | 1128 | 840 |
Eisenstein series | 160 | 48 | 112 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(128))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(128))\) into lower level spaces
\( S_{5}^{\mathrm{old}}(\Gamma_1(128)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 7}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 1}\)