Defining parameters
Level: | \( N \) | = | \( 128 = 2^{7} \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 5 \) | ||
Sturm bound: | \(8192\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(128))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3664 | 2040 | 1624 |
Cusp forms | 3504 | 1992 | 1512 |
Eisenstein series | 160 | 48 | 112 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(128))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
128.8.a | \(\chi_{128}(1, \cdot)\) | 128.8.a.a | 3 | 1 |
128.8.a.b | 3 | |||
128.8.a.c | 3 | |||
128.8.a.d | 3 | |||
128.8.a.e | 4 | |||
128.8.a.f | 4 | |||
128.8.a.g | 4 | |||
128.8.a.h | 4 | |||
128.8.b | \(\chi_{128}(65, \cdot)\) | 128.8.b.a | 2 | 1 |
128.8.b.b | 2 | |||
128.8.b.c | 4 | |||
128.8.b.d | 4 | |||
128.8.b.e | 4 | |||
128.8.b.f | 4 | |||
128.8.b.g | 8 | |||
128.8.e | \(\chi_{128}(33, \cdot)\) | 128.8.e.a | 26 | 2 |
128.8.e.b | 26 | |||
128.8.g | \(\chi_{128}(17, \cdot)\) | n/a | 108 | 4 |
128.8.i | \(\chi_{128}(9, \cdot)\) | None | 0 | 8 |
128.8.k | \(\chi_{128}(5, \cdot)\) | n/a | 1776 | 16 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(128))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(128)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 1}\)