Properties

Label 1280.2.f
Level $1280$
Weight $2$
Character orbit 1280.f
Rep. character $\chi_{1280}(129,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $12$
Sturm bound $384$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(384\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(3\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1280, [\chi])\).

Total New Old
Modular forms 216 52 164
Cusp forms 168 44 124
Eisenstein series 48 8 40

Trace form

\( 44 q + 44 q^{9} + 4 q^{25} + 8 q^{41} - 28 q^{49} + 28 q^{81} - 24 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1280, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1280.2.f.a 1280.f 40.f $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 40.2.c.a \(0\) \(-4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 q^{3}+(-i-2)q^{5}-2 i q^{7}+q^{9}+\cdots\)
1280.2.f.b 1280.f 40.f $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 40.2.c.a \(0\) \(-4\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 q^{3}+(-i+2)q^{5}-2 i q^{7}+q^{9}+\cdots\)
1280.2.f.c 1280.f 40.f $2$ $10.221$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 160.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(i-2)q^{5}-3 q^{9}+4 q^{13}-8 i q^{17}+\cdots\)
1280.2.f.d 1280.f 40.f $2$ $10.221$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 160.2.c.a \(0\) \(0\) \(4\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(i+2)q^{5}-3 q^{9}-4 q^{13}+8 i q^{17}+\cdots\)
1280.2.f.e 1280.f 40.f $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 40.2.c.a \(0\) \(4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 q^{3}+(-i-2)q^{5}+2 i q^{7}+q^{9}+\cdots\)
1280.2.f.f 1280.f 40.f $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 40.2.c.a \(0\) \(4\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 q^{3}+(-i+2)q^{5}+2 i q^{7}+q^{9}+\cdots\)
1280.2.f.g 1280.f 40.f $4$ $10.221$ \(\Q(i, \sqrt{5})\) \(\Q(\sqrt{-5}) \) 160.2.c.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-1-\beta _{3})q^{3}-\beta _{2}q^{5}+(3\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
1280.2.f.h 1280.f 40.f $4$ $10.221$ \(\Q(i, \sqrt{5})\) \(\Q(\sqrt{-5}) \) 160.2.c.b \(0\) \(4\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(1+\beta _{3})q^{3}-\beta _{2}q^{5}+(-3\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
1280.2.f.i 1280.f 40.f $6$ $10.221$ 6.0.350464.1 None 640.2.c.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{1})q^{3}+(\beta _{1}+\beta _{3})q^{5}+(\beta _{2}+\cdots)q^{7}+\cdots\)
1280.2.f.j 1280.f 40.f $6$ $10.221$ 6.0.350464.1 None 640.2.c.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{1})q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(\beta _{2}+\cdots)q^{7}+\cdots\)
1280.2.f.k 1280.f 40.f $6$ $10.221$ 6.0.350464.1 None 640.2.c.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{3}+(\beta _{1}+\beta _{3})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\)
1280.2.f.l 1280.f 40.f $6$ $10.221$ 6.0.350464.1 None 640.2.c.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1280, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(640, [\chi])\)\(^{\oplus 2}\)