Properties

Label 1280.2.f
Level 12801280
Weight 22
Character orbit 1280.f
Rep. character χ1280(129,)\chi_{1280}(129,\cdot)
Character field Q\Q
Dimension 4444
Newform subspaces 1212
Sturm bound 384384
Trace bound 1313

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1280=285 1280 = 2^{8} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1280.f (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 40 40
Character field: Q\Q
Newform subspaces: 12 12
Sturm bound: 384384
Trace bound: 1313
Distinguishing TpT_p: 33, 1313

Dimensions

The following table gives the dimensions of various subspaces of M2(1280,[χ])M_{2}(1280, [\chi]).

Total New Old
Modular forms 216 52 164
Cusp forms 168 44 124
Eisenstein series 48 8 40

Trace form

44q+44q9+4q25+8q4128q49+28q8124q89+O(q100) 44 q + 44 q^{9} + 4 q^{25} + 8 q^{41} - 28 q^{49} + 28 q^{81} - 24 q^{89}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1280,[χ])S_{2}^{\mathrm{new}}(1280, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1280.2.f.a 1280.f 40.f 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 40.2.c.a 00 4-4 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q2q3+(i2)q52iq7+q9+q-2 q^{3}+(-i-2)q^{5}-2 i q^{7}+q^{9}+\cdots
1280.2.f.b 1280.f 40.f 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 40.2.c.a 00 4-4 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q2q3+(i+2)q52iq7+q9+q-2 q^{3}+(-i+2)q^{5}-2 i q^{7}+q^{9}+\cdots
1280.2.f.c 1280.f 40.f 22 10.22110.221 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 160.2.c.a 00 00 4-4 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+(i2)q53q9+4q138iq17+q+(i-2)q^{5}-3 q^{9}+4 q^{13}-8 i q^{17}+\cdots
1280.2.f.d 1280.f 40.f 22 10.22110.221 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 160.2.c.a 00 00 44 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+(i+2)q53q94q13+8iq17+q+(i+2)q^{5}-3 q^{9}-4 q^{13}+8 i q^{17}+\cdots
1280.2.f.e 1280.f 40.f 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 40.2.c.a 00 44 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+2q3+(i2)q5+2iq7+q9+q+2 q^{3}+(-i-2)q^{5}+2 i q^{7}+q^{9}+\cdots
1280.2.f.f 1280.f 40.f 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 40.2.c.a 00 44 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+2q3+(i+2)q5+2iq7+q9+q+2 q^{3}+(-i+2)q^{5}+2 i q^{7}+q^{9}+\cdots
1280.2.f.g 1280.f 40.f 44 10.22110.221 Q(i,5)\Q(i, \sqrt{5}) Q(5)\Q(\sqrt{-5}) 160.2.c.b 00 4-4 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+(1β3)q3β2q5+(3β1β2+)q7+q+(-1-\beta _{3})q^{3}-\beta _{2}q^{5}+(3\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots
1280.2.f.h 1280.f 40.f 44 10.22110.221 Q(i,5)\Q(i, \sqrt{5}) Q(5)\Q(\sqrt{-5}) 160.2.c.b 00 44 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+(1+β3)q3β2q5+(3β1+β2+)q7+q+(1+\beta _{3})q^{3}-\beta _{2}q^{5}+(-3\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots
1280.2.f.i 1280.f 40.f 66 10.22110.221 6.0.350464.1 None 640.2.c.a 00 4-4 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(1β1)q3+(β1+β3)q5+(β2+)q7+q+(-1-\beta _{1})q^{3}+(\beta _{1}+\beta _{3})q^{5}+(\beta _{2}+\cdots)q^{7}+\cdots
1280.2.f.j 1280.f 40.f 66 10.22110.221 6.0.350464.1 None 640.2.c.a 00 4-4 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(1β1)q3+(β1+β5)q5+(β2+)q7+q+(-1-\beta _{1})q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(\beta _{2}+\cdots)q^{7}+\cdots
1280.2.f.k 1280.f 40.f 66 10.22110.221 6.0.350464.1 None 640.2.c.a 00 44 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(1+β1)q3+(β1+β3)q5+(β2+)q7+q+(1+\beta _{1})q^{3}+(\beta _{1}+\beta _{3})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots
1280.2.f.l 1280.f 40.f 66 10.22110.221 6.0.350464.1 None 640.2.c.a 00 44 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(1+β1)q3+(β1+β5)q5+(β2+)q7+q+(1+\beta _{1})q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots

Decomposition of S2old(1280,[χ])S_{2}^{\mathrm{old}}(1280, [\chi]) into lower level spaces

S2old(1280,[χ]) S_{2}^{\mathrm{old}}(1280, [\chi]) \simeq S2new(40,[χ])S_{2}^{\mathrm{new}}(40, [\chi])6^{\oplus 6}\oplusS2new(160,[χ])S_{2}^{\mathrm{new}}(160, [\chi])4^{\oplus 4}\oplusS2new(320,[χ])S_{2}^{\mathrm{new}}(320, [\chi])3^{\oplus 3}\oplusS2new(640,[χ])S_{2}^{\mathrm{new}}(640, [\chi])2^{\oplus 2}