Properties

Label 1280.2.n
Level 12801280
Weight 22
Character orbit 1280.n
Rep. character χ1280(767,)\chi_{1280}(767,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 8888
Newform subspaces 1919
Sturm bound 384384
Trace bound 1313

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1280=285 1280 = 2^{8} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1280.n (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 20 20
Character field: Q(i)\Q(i)
Newform subspaces: 19 19
Sturm bound: 384384
Trace bound: 1313
Distinguishing TpT_p: 33, 77, 1313

Dimensions

The following table gives the dimensions of various subspaces of M2(1280,[χ])M_{2}(1280, [\chi]).

Total New Old
Modular forms 432 104 328
Cusp forms 336 88 248
Eisenstein series 96 16 80

Trace form

88q8q17+8q2532q33+16q4116q578q65+40q7340q818q97+O(q100) 88 q - 8 q^{17} + 8 q^{25} - 32 q^{33} + 16 q^{41} - 16 q^{57} - 8 q^{65} + 40 q^{73} - 40 q^{81} - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1280,[χ])S_{2}^{\mathrm{new}}(1280, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1280.2.n.a 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 640.2.o.a 00 4-4 2-2 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(2i2)q3+(2i1)q5+q+(-2 i-2)q^{3}+(-2 i-1)q^{5}+\cdots
1280.2.n.b 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 640.2.o.a 00 4-4 22 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(2i2)q3+(2i+1)q5+(2i+2)q7+q+(-2 i-2)q^{3}+(2 i+1)q^{5}+(-2 i+2)q^{7}+\cdots
1280.2.n.c 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 320.2.o.a 00 2-2 4-4 22 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i1)q3+(i2)q5+(i+1)q7+q+(-i-1)q^{3}+(i-2)q^{5}+(-i+1)q^{7}+\cdots
1280.2.n.d 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 320.2.o.a 00 2-2 44 2-2 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i1)q3+(i+2)q5+(i1)q7+q+(-i-1)q^{3}+(-i+2)q^{5}+(i-1)q^{7}+\cdots
1280.2.n.e 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 640.2.o.c 00 00 2-2 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(2i1)q53iq9+(5i5)q13+q+(-2 i-1)q^{5}-3 i q^{9}+(5 i-5)q^{13}+\cdots
1280.2.n.f 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 640.2.o.d 00 00 2-2 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(2i1)q53iq9+(i1)q13+q+(2 i-1)q^{5}-3 i q^{9}+(i-1)q^{13}+\cdots
1280.2.n.g 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 640.2.o.d 00 00 22 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(2i+1)q53iq9+(i+1)q13+q+(-2 i+1)q^{5}-3 i q^{9}+(-i+1)q^{13}+\cdots
1280.2.n.h 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 640.2.o.c 00 00 22 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(2i+1)q53iq9+(5i+5)q13+q+(2 i+1)q^{5}-3 i q^{9}+(-5 i+5)q^{13}+\cdots
1280.2.n.i 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 320.2.o.a 00 22 4-4 2-2 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i+1)q3+(i2)q5+(i1)q7+q+(i+1)q^{3}+(i-2)q^{5}+(i-1)q^{7}+\cdots
1280.2.n.j 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 320.2.o.a 00 22 44 22 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i+1)q3+(i+2)q5+(i+1)q7+q+(i+1)q^{3}+(-i+2)q^{5}+(-i+1)q^{7}+\cdots
1280.2.n.k 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 640.2.o.a 00 44 2-2 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(2i+2)q3+(2i1)q5+(2i+2)q7+q+(2 i+2)q^{3}+(-2 i-1)q^{5}+(-2 i+2)q^{7}+\cdots
1280.2.n.l 1280.n 20.e 22 10.22110.221 Q(1)\Q(\sqrt{-1}) None 640.2.o.a 00 44 22 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(2i+2)q3+(2i+1)q5+(2i2)q7+q+(2 i+2)q^{3}+(2 i+1)q^{5}+(2 i-2)q^{7}+\cdots
1280.2.n.m 1280.n 20.e 88 10.22110.221 Q(ζ20)\Q(\zeta_{20}) None 40.2.k.a 00 4-4 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(β21)q3+(β6β4)q5β6q7+q+(\beta_{2}-1)q^{3}+(\beta_{6}-\beta_{4})q^{5}-\beta_{6} q^{7}+\cdots
1280.2.n.n 1280.n 20.e 88 10.22110.221 8.0.49787136.1 None 320.2.o.e 00 00 00 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(β2β7)q3+(β2+β4+β7)q5+q+(-\beta _{2}-\beta _{7})q^{3}+(\beta _{2}+\beta _{4}+\beta _{7})q^{5}+\cdots
1280.2.n.o 1280.n 20.e 88 10.22110.221 8.0.40960000.1 None 640.2.o.i 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ6q3β4q5β2q7β3q9+q-\beta _{6}q^{3}-\beta _{4}q^{5}-\beta _{2}q^{7}-\beta _{3}q^{9}+\cdots
1280.2.n.p 1280.n 20.e 88 10.22110.221 8.0.49787136.1 None 320.2.o.e 00 00 00 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(β2β7)q3+(β2β4β7)q5+q+(-\beta _{2}-\beta _{7})q^{3}+(-\beta _{2}-\beta _{4}-\beta _{7})q^{5}+\cdots
1280.2.n.q 1280.n 20.e 88 10.22110.221 Q(ζ20)\Q(\zeta_{20}) None 40.2.k.a 00 44 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(β2+1)q3+(β6+β4)q5+q+(-\beta_{2}+1)q^{3}+(-\beta_{6}+\beta_{4})q^{5}+\cdots
1280.2.n.r 1280.n 20.e 1212 10.22110.221 12.0.\cdots.1 None 640.2.o.j 00 00 4-4 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β2q3+β7q5+β6q7+(β5+β7+)q9+q+\beta _{2}q^{3}+\beta _{7}q^{5}+\beta _{6}q^{7}+(\beta _{5}+\beta _{7}+\cdots)q^{9}+\cdots
1280.2.n.s 1280.n 20.e 1212 10.22110.221 12.0.\cdots.1 None 640.2.o.j 00 00 44 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β2q3β7q5β6q7+(β5+β7+)q9+q+\beta _{2}q^{3}-\beta _{7}q^{5}-\beta _{6}q^{7}+(\beta _{5}+\beta _{7}+\cdots)q^{9}+\cdots

Decomposition of S2old(1280,[χ])S_{2}^{\mathrm{old}}(1280, [\chi]) into lower level spaces

S2old(1280,[χ]) S_{2}^{\mathrm{old}}(1280, [\chi]) \simeq S2new(20,[χ])S_{2}^{\mathrm{new}}(20, [\chi])7^{\oplus 7}\oplusS2new(80,[χ])S_{2}^{\mathrm{new}}(80, [\chi])5^{\oplus 5}\oplusS2new(160,[χ])S_{2}^{\mathrm{new}}(160, [\chi])4^{\oplus 4}\oplusS2new(320,[χ])S_{2}^{\mathrm{new}}(320, [\chi])3^{\oplus 3}\oplusS2new(640,[χ])S_{2}^{\mathrm{new}}(640, [\chi])2^{\oplus 2}