Properties

Label 1280.3.g.c.1151.2
Level $1280$
Weight $3$
Character 1280.1151
Analytic conductor $34.877$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,3,Mod(1151,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1280.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.8774738381\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.2
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 1280.1151
Dual form 1280.3.g.c.1151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.23607 q^{3} +2.23607i q^{5} +1.23607i q^{7} -7.47214 q^{9} +11.4164 q^{11} -5.41641i q^{13} -2.76393i q^{15} +6.94427 q^{17} -29.8885 q^{19} -1.52786i q^{21} -19.1246i q^{23} -5.00000 q^{25} +20.3607 q^{27} -21.0557i q^{29} +34.4721i q^{31} -14.1115 q^{33} -2.76393 q^{35} -19.3050i q^{37} +6.69505i q^{39} +58.1378 q^{41} -62.7639 q^{43} -16.7082i q^{45} +63.4853i q^{47} +47.4721 q^{49} -8.58359 q^{51} -98.1378i q^{53} +25.5279i q^{55} +36.9443 q^{57} +19.2786 q^{59} -1.19350i q^{61} -9.23607i q^{63} +12.1115 q^{65} +5.01316 q^{67} +23.6393i q^{69} -84.3607i q^{71} +70.7214 q^{73} +6.18034 q^{75} +14.1115i q^{77} -124.498i q^{79} +42.0820 q^{81} +160.652 q^{83} +15.5279i q^{85} +26.0263i q^{87} -46.2229 q^{89} +6.69505 q^{91} -42.6099i q^{93} -66.8328i q^{95} +133.331 q^{97} -85.3050 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 12 q^{9} - 8 q^{11} - 8 q^{17} - 48 q^{19} - 20 q^{25} - 8 q^{27} - 128 q^{33} - 20 q^{35} - 260 q^{43} + 172 q^{49} - 88 q^{51} + 112 q^{57} + 256 q^{59} + 120 q^{65} - 132 q^{67} + 104 q^{73}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.23607 −0.412023 −0.206011 0.978550i \(-0.566048\pi\)
−0.206011 + 0.978550i \(0.566048\pi\)
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 1.23607i 0.176581i 0.996095 + 0.0882906i \(0.0281404\pi\)
−0.996095 + 0.0882906i \(0.971860\pi\)
\(8\) 0 0
\(9\) −7.47214 −0.830237
\(10\) 0 0
\(11\) 11.4164 1.03786 0.518928 0.854818i \(-0.326331\pi\)
0.518928 + 0.854818i \(0.326331\pi\)
\(12\) 0 0
\(13\) − 5.41641i − 0.416647i −0.978060 0.208323i \(-0.933199\pi\)
0.978060 0.208323i \(-0.0668006\pi\)
\(14\) 0 0
\(15\) − 2.76393i − 0.184262i
\(16\) 0 0
\(17\) 6.94427 0.408487 0.204243 0.978920i \(-0.434527\pi\)
0.204243 + 0.978920i \(0.434527\pi\)
\(18\) 0 0
\(19\) −29.8885 −1.57308 −0.786541 0.617539i \(-0.788130\pi\)
−0.786541 + 0.617539i \(0.788130\pi\)
\(20\) 0 0
\(21\) − 1.52786i − 0.0727554i
\(22\) 0 0
\(23\) − 19.1246i − 0.831505i −0.909478 0.415752i \(-0.863518\pi\)
0.909478 0.415752i \(-0.136482\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 20.3607 0.754099
\(28\) 0 0
\(29\) − 21.0557i − 0.726060i −0.931778 0.363030i \(-0.881742\pi\)
0.931778 0.363030i \(-0.118258\pi\)
\(30\) 0 0
\(31\) 34.4721i 1.11200i 0.831181 + 0.556002i \(0.187665\pi\)
−0.831181 + 0.556002i \(0.812335\pi\)
\(32\) 0 0
\(33\) −14.1115 −0.427620
\(34\) 0 0
\(35\) −2.76393 −0.0789695
\(36\) 0 0
\(37\) − 19.3050i − 0.521755i −0.965372 0.260878i \(-0.915988\pi\)
0.965372 0.260878i \(-0.0840119\pi\)
\(38\) 0 0
\(39\) 6.69505i 0.171668i
\(40\) 0 0
\(41\) 58.1378 1.41799 0.708997 0.705211i \(-0.249148\pi\)
0.708997 + 0.705211i \(0.249148\pi\)
\(42\) 0 0
\(43\) −62.7639 −1.45963 −0.729813 0.683647i \(-0.760393\pi\)
−0.729813 + 0.683647i \(0.760393\pi\)
\(44\) 0 0
\(45\) − 16.7082i − 0.371293i
\(46\) 0 0
\(47\) 63.4853i 1.35075i 0.737474 + 0.675375i \(0.236018\pi\)
−0.737474 + 0.675375i \(0.763982\pi\)
\(48\) 0 0
\(49\) 47.4721 0.968819
\(50\) 0 0
\(51\) −8.58359 −0.168306
\(52\) 0 0
\(53\) − 98.1378i − 1.85166i −0.377945 0.925828i \(-0.623369\pi\)
0.377945 0.925828i \(-0.376631\pi\)
\(54\) 0 0
\(55\) 25.5279i 0.464143i
\(56\) 0 0
\(57\) 36.9443 0.648145
\(58\) 0 0
\(59\) 19.2786 0.326757 0.163378 0.986563i \(-0.447761\pi\)
0.163378 + 0.986563i \(0.447761\pi\)
\(60\) 0 0
\(61\) − 1.19350i − 0.0195655i −0.999952 0.00978275i \(-0.996886\pi\)
0.999952 0.00978275i \(-0.00311400\pi\)
\(62\) 0 0
\(63\) − 9.23607i − 0.146604i
\(64\) 0 0
\(65\) 12.1115 0.186330
\(66\) 0 0
\(67\) 5.01316 0.0748232 0.0374116 0.999300i \(-0.488089\pi\)
0.0374116 + 0.999300i \(0.488089\pi\)
\(68\) 0 0
\(69\) 23.6393i 0.342599i
\(70\) 0 0
\(71\) − 84.3607i − 1.18818i −0.804399 0.594089i \(-0.797513\pi\)
0.804399 0.594089i \(-0.202487\pi\)
\(72\) 0 0
\(73\) 70.7214 0.968786 0.484393 0.874851i \(-0.339041\pi\)
0.484393 + 0.874851i \(0.339041\pi\)
\(74\) 0 0
\(75\) 6.18034 0.0824045
\(76\) 0 0
\(77\) 14.1115i 0.183266i
\(78\) 0 0
\(79\) − 124.498i − 1.57593i −0.615720 0.787965i \(-0.711135\pi\)
0.615720 0.787965i \(-0.288865\pi\)
\(80\) 0 0
\(81\) 42.0820 0.519531
\(82\) 0 0
\(83\) 160.652 1.93557 0.967786 0.251774i \(-0.0810140\pi\)
0.967786 + 0.251774i \(0.0810140\pi\)
\(84\) 0 0
\(85\) 15.5279i 0.182681i
\(86\) 0 0
\(87\) 26.0263i 0.299153i
\(88\) 0 0
\(89\) −46.2229 −0.519359 −0.259679 0.965695i \(-0.583617\pi\)
−0.259679 + 0.965695i \(0.583617\pi\)
\(90\) 0 0
\(91\) 6.69505 0.0735720
\(92\) 0 0
\(93\) − 42.6099i − 0.458171i
\(94\) 0 0
\(95\) − 66.8328i − 0.703503i
\(96\) 0 0
\(97\) 133.331 1.37455 0.687275 0.726398i \(-0.258807\pi\)
0.687275 + 0.726398i \(0.258807\pi\)
\(98\) 0 0
\(99\) −85.3050 −0.861666
\(100\) 0 0
\(101\) − 49.7771i − 0.492842i −0.969163 0.246421i \(-0.920745\pi\)
0.969163 0.246421i \(-0.0792547\pi\)
\(102\) 0 0
\(103\) 196.705i 1.90976i 0.296995 + 0.954879i \(0.404016\pi\)
−0.296995 + 0.954879i \(0.595984\pi\)
\(104\) 0 0
\(105\) 3.41641 0.0325372
\(106\) 0 0
\(107\) −14.9017 −0.139268 −0.0696341 0.997573i \(-0.522183\pi\)
−0.0696341 + 0.997573i \(0.522183\pi\)
\(108\) 0 0
\(109\) − 174.859i − 1.60421i −0.597182 0.802106i \(-0.703713\pi\)
0.597182 0.802106i \(-0.296287\pi\)
\(110\) 0 0
\(111\) 23.8622i 0.214975i
\(112\) 0 0
\(113\) −33.0557 −0.292529 −0.146264 0.989246i \(-0.546725\pi\)
−0.146264 + 0.989246i \(0.546725\pi\)
\(114\) 0 0
\(115\) 42.7639 0.371860
\(116\) 0 0
\(117\) 40.4721i 0.345916i
\(118\) 0 0
\(119\) 8.58359i 0.0721310i
\(120\) 0 0
\(121\) 9.33437 0.0771435
\(122\) 0 0
\(123\) −71.8622 −0.584246
\(124\) 0 0
\(125\) − 11.1803i − 0.0894427i
\(126\) 0 0
\(127\) − 93.7345i − 0.738067i −0.929416 0.369034i \(-0.879689\pi\)
0.929416 0.369034i \(-0.120311\pi\)
\(128\) 0 0
\(129\) 77.5805 0.601399
\(130\) 0 0
\(131\) −80.8065 −0.616844 −0.308422 0.951250i \(-0.599801\pi\)
−0.308422 + 0.951250i \(0.599801\pi\)
\(132\) 0 0
\(133\) − 36.9443i − 0.277776i
\(134\) 0 0
\(135\) 45.5279i 0.337243i
\(136\) 0 0
\(137\) 192.164 1.40266 0.701329 0.712838i \(-0.252591\pi\)
0.701329 + 0.712838i \(0.252591\pi\)
\(138\) 0 0
\(139\) −6.60990 −0.0475533 −0.0237766 0.999717i \(-0.507569\pi\)
−0.0237766 + 0.999717i \(0.507569\pi\)
\(140\) 0 0
\(141\) − 78.4721i − 0.556540i
\(142\) 0 0
\(143\) − 61.8359i − 0.432419i
\(144\) 0 0
\(145\) 47.0820 0.324704
\(146\) 0 0
\(147\) −58.6788 −0.399175
\(148\) 0 0
\(149\) − 199.803i − 1.34096i −0.741927 0.670481i \(-0.766088\pi\)
0.741927 0.670481i \(-0.233912\pi\)
\(150\) 0 0
\(151\) − 53.2523i − 0.352664i −0.984331 0.176332i \(-0.943577\pi\)
0.984331 0.176332i \(-0.0564233\pi\)
\(152\) 0 0
\(153\) −51.8885 −0.339141
\(154\) 0 0
\(155\) −77.0820 −0.497303
\(156\) 0 0
\(157\) − 43.8034i − 0.279003i −0.990222 0.139501i \(-0.955450\pi\)
0.990222 0.139501i \(-0.0445499\pi\)
\(158\) 0 0
\(159\) 121.305i 0.762924i
\(160\) 0 0
\(161\) 23.6393 0.146828
\(162\) 0 0
\(163\) 188.705 1.15770 0.578850 0.815434i \(-0.303502\pi\)
0.578850 + 0.815434i \(0.303502\pi\)
\(164\) 0 0
\(165\) − 31.5542i − 0.191237i
\(166\) 0 0
\(167\) − 260.705i − 1.56111i −0.625088 0.780554i \(-0.714937\pi\)
0.625088 0.780554i \(-0.285063\pi\)
\(168\) 0 0
\(169\) 139.663 0.826405
\(170\) 0 0
\(171\) 223.331 1.30603
\(172\) 0 0
\(173\) − 28.6950i − 0.165867i −0.996555 0.0829337i \(-0.973571\pi\)
0.996555 0.0829337i \(-0.0264290\pi\)
\(174\) 0 0
\(175\) − 6.18034i − 0.0353162i
\(176\) 0 0
\(177\) −23.8297 −0.134631
\(178\) 0 0
\(179\) 95.5016 0.533528 0.266764 0.963762i \(-0.414046\pi\)
0.266764 + 0.963762i \(0.414046\pi\)
\(180\) 0 0
\(181\) − 176.885i − 0.977268i −0.872489 0.488634i \(-0.837495\pi\)
0.872489 0.488634i \(-0.162505\pi\)
\(182\) 0 0
\(183\) 1.47524i 0.00806143i
\(184\) 0 0
\(185\) 43.1672 0.233336
\(186\) 0 0
\(187\) 79.2786 0.423950
\(188\) 0 0
\(189\) 25.1672i 0.133160i
\(190\) 0 0
\(191\) 231.967i 1.21449i 0.794515 + 0.607245i \(0.207725\pi\)
−0.794515 + 0.607245i \(0.792275\pi\)
\(192\) 0 0
\(193\) 168.387 0.872471 0.436236 0.899832i \(-0.356311\pi\)
0.436236 + 0.899832i \(0.356311\pi\)
\(194\) 0 0
\(195\) −14.9706 −0.0767722
\(196\) 0 0
\(197\) − 31.0820i − 0.157777i −0.996883 0.0788884i \(-0.974863\pi\)
0.996883 0.0788884i \(-0.0251371\pi\)
\(198\) 0 0
\(199\) − 123.777i − 0.621995i −0.950411 0.310998i \(-0.899337\pi\)
0.950411 0.310998i \(-0.100663\pi\)
\(200\) 0 0
\(201\) −6.19660 −0.0308289
\(202\) 0 0
\(203\) 26.0263 0.128208
\(204\) 0 0
\(205\) 130.000i 0.634146i
\(206\) 0 0
\(207\) 142.902i 0.690346i
\(208\) 0 0
\(209\) −341.220 −1.63263
\(210\) 0 0
\(211\) −34.2492 −0.162319 −0.0811593 0.996701i \(-0.525862\pi\)
−0.0811593 + 0.996701i \(0.525862\pi\)
\(212\) 0 0
\(213\) 104.276i 0.489557i
\(214\) 0 0
\(215\) − 140.344i − 0.652765i
\(216\) 0 0
\(217\) −42.6099 −0.196359
\(218\) 0 0
\(219\) −87.4164 −0.399162
\(220\) 0 0
\(221\) − 37.6130i − 0.170195i
\(222\) 0 0
\(223\) − 202.987i − 0.910255i −0.890426 0.455127i \(-0.849594\pi\)
0.890426 0.455127i \(-0.150406\pi\)
\(224\) 0 0
\(225\) 37.3607 0.166047
\(226\) 0 0
\(227\) −232.207 −1.02294 −0.511468 0.859302i \(-0.670898\pi\)
−0.511468 + 0.859302i \(0.670898\pi\)
\(228\) 0 0
\(229\) − 163.390i − 0.713494i −0.934201 0.356747i \(-0.883886\pi\)
0.934201 0.356747i \(-0.116114\pi\)
\(230\) 0 0
\(231\) − 17.4427i − 0.0755096i
\(232\) 0 0
\(233\) 11.2198 0.0481537 0.0240768 0.999710i \(-0.492335\pi\)
0.0240768 + 0.999710i \(0.492335\pi\)
\(234\) 0 0
\(235\) −141.957 −0.604074
\(236\) 0 0
\(237\) 153.889i 0.649319i
\(238\) 0 0
\(239\) 216.721i 0.906784i 0.891311 + 0.453392i \(0.149786\pi\)
−0.891311 + 0.453392i \(0.850214\pi\)
\(240\) 0 0
\(241\) −49.1409 −0.203904 −0.101952 0.994789i \(-0.532509\pi\)
−0.101952 + 0.994789i \(0.532509\pi\)
\(242\) 0 0
\(243\) −235.262 −0.968158
\(244\) 0 0
\(245\) 106.151i 0.433269i
\(246\) 0 0
\(247\) 161.889i 0.655419i
\(248\) 0 0
\(249\) −198.577 −0.797500
\(250\) 0 0
\(251\) 282.525 1.12560 0.562798 0.826594i \(-0.309725\pi\)
0.562798 + 0.826594i \(0.309725\pi\)
\(252\) 0 0
\(253\) − 218.334i − 0.862982i
\(254\) 0 0
\(255\) − 19.1935i − 0.0752686i
\(256\) 0 0
\(257\) 199.941 0.777981 0.388991 0.921242i \(-0.372824\pi\)
0.388991 + 0.921242i \(0.372824\pi\)
\(258\) 0 0
\(259\) 23.8622 0.0921322
\(260\) 0 0
\(261\) 157.331i 0.602802i
\(262\) 0 0
\(263\) 247.761i 0.942056i 0.882118 + 0.471028i \(0.156117\pi\)
−0.882118 + 0.471028i \(0.843883\pi\)
\(264\) 0 0
\(265\) 219.443 0.828086
\(266\) 0 0
\(267\) 57.1347 0.213987
\(268\) 0 0
\(269\) − 13.4164i − 0.0498751i −0.999689 0.0249376i \(-0.992061\pi\)
0.999689 0.0249376i \(-0.00793870\pi\)
\(270\) 0 0
\(271\) − 59.4690i − 0.219443i −0.993962 0.109721i \(-0.965004\pi\)
0.993962 0.109721i \(-0.0349959\pi\)
\(272\) 0 0
\(273\) −8.27553 −0.0303133
\(274\) 0 0
\(275\) −57.0820 −0.207571
\(276\) 0 0
\(277\) 510.859i 1.84426i 0.386884 + 0.922128i \(0.373551\pi\)
−0.386884 + 0.922128i \(0.626449\pi\)
\(278\) 0 0
\(279\) − 257.580i − 0.923228i
\(280\) 0 0
\(281\) −489.299 −1.74128 −0.870638 0.491924i \(-0.836294\pi\)
−0.870638 + 0.491924i \(0.836294\pi\)
\(282\) 0 0
\(283\) 210.233 0.742873 0.371436 0.928458i \(-0.378865\pi\)
0.371436 + 0.928458i \(0.378865\pi\)
\(284\) 0 0
\(285\) 82.6099i 0.289859i
\(286\) 0 0
\(287\) 71.8622i 0.250391i
\(288\) 0 0
\(289\) −240.777 −0.833139
\(290\) 0 0
\(291\) −164.807 −0.566345
\(292\) 0 0
\(293\) 208.472i 0.711509i 0.934579 + 0.355754i \(0.115776\pi\)
−0.934579 + 0.355754i \(0.884224\pi\)
\(294\) 0 0
\(295\) 43.1084i 0.146130i
\(296\) 0 0
\(297\) 232.446 0.782646
\(298\) 0 0
\(299\) −103.587 −0.346444
\(300\) 0 0
\(301\) − 77.5805i − 0.257742i
\(302\) 0 0
\(303\) 61.5279i 0.203062i
\(304\) 0 0
\(305\) 2.66874 0.00874996
\(306\) 0 0
\(307\) 229.564 0.747766 0.373883 0.927476i \(-0.378026\pi\)
0.373883 + 0.927476i \(0.378026\pi\)
\(308\) 0 0
\(309\) − 243.141i − 0.786864i
\(310\) 0 0
\(311\) 351.692i 1.13084i 0.824802 + 0.565421i \(0.191286\pi\)
−0.824802 + 0.565421i \(0.808714\pi\)
\(312\) 0 0
\(313\) −418.551 −1.33722 −0.668612 0.743612i \(-0.733111\pi\)
−0.668612 + 0.743612i \(0.733111\pi\)
\(314\) 0 0
\(315\) 20.6525 0.0655634
\(316\) 0 0
\(317\) 351.082i 1.10751i 0.832678 + 0.553757i \(0.186806\pi\)
−0.832678 + 0.553757i \(0.813194\pi\)
\(318\) 0 0
\(319\) − 240.381i − 0.753545i
\(320\) 0 0
\(321\) 18.4195 0.0573817
\(322\) 0 0
\(323\) −207.554 −0.642583
\(324\) 0 0
\(325\) 27.0820i 0.0833294i
\(326\) 0 0
\(327\) 216.138i 0.660972i
\(328\) 0 0
\(329\) −78.4721 −0.238517
\(330\) 0 0
\(331\) −630.853 −1.90590 −0.952950 0.303127i \(-0.901969\pi\)
−0.952950 + 0.303127i \(0.901969\pi\)
\(332\) 0 0
\(333\) 144.249i 0.433181i
\(334\) 0 0
\(335\) 11.2098i 0.0334620i
\(336\) 0 0
\(337\) 284.780 0.845045 0.422523 0.906352i \(-0.361145\pi\)
0.422523 + 0.906352i \(0.361145\pi\)
\(338\) 0 0
\(339\) 40.8591 0.120528
\(340\) 0 0
\(341\) 393.548i 1.15410i
\(342\) 0 0
\(343\) 119.246i 0.347656i
\(344\) 0 0
\(345\) −52.8591 −0.153215
\(346\) 0 0
\(347\) −118.902 −0.342656 −0.171328 0.985214i \(-0.554806\pi\)
−0.171328 + 0.985214i \(0.554806\pi\)
\(348\) 0 0
\(349\) 19.0495i 0.0545831i 0.999628 + 0.0272916i \(0.00868826\pi\)
−0.999628 + 0.0272916i \(0.991312\pi\)
\(350\) 0 0
\(351\) − 110.282i − 0.314193i
\(352\) 0 0
\(353\) −96.3344 −0.272902 −0.136451 0.990647i \(-0.543570\pi\)
−0.136451 + 0.990647i \(0.543570\pi\)
\(354\) 0 0
\(355\) 188.636 0.531370
\(356\) 0 0
\(357\) − 10.6099i − 0.0297196i
\(358\) 0 0
\(359\) 15.0031i 0.0417914i 0.999782 + 0.0208957i \(0.00665179\pi\)
−0.999782 + 0.0208957i \(0.993348\pi\)
\(360\) 0 0
\(361\) 532.325 1.47458
\(362\) 0 0
\(363\) −11.5379 −0.0317849
\(364\) 0 0
\(365\) 158.138i 0.433254i
\(366\) 0 0
\(367\) − 439.348i − 1.19713i −0.801073 0.598566i \(-0.795737\pi\)
0.801073 0.598566i \(-0.204263\pi\)
\(368\) 0 0
\(369\) −434.413 −1.17727
\(370\) 0 0
\(371\) 121.305 0.326968
\(372\) 0 0
\(373\) − 346.689i − 0.929461i −0.885452 0.464730i \(-0.846151\pi\)
0.885452 0.464730i \(-0.153849\pi\)
\(374\) 0 0
\(375\) 13.8197i 0.0368524i
\(376\) 0 0
\(377\) −114.046 −0.302510
\(378\) 0 0
\(379\) −338.768 −0.893846 −0.446923 0.894572i \(-0.647480\pi\)
−0.446923 + 0.894572i \(0.647480\pi\)
\(380\) 0 0
\(381\) 115.862i 0.304100i
\(382\) 0 0
\(383\) 142.351i 0.371673i 0.982581 + 0.185836i \(0.0594994\pi\)
−0.982581 + 0.185836i \(0.940501\pi\)
\(384\) 0 0
\(385\) −31.5542 −0.0819589
\(386\) 0 0
\(387\) 468.981 1.21184
\(388\) 0 0
\(389\) 91.6331i 0.235561i 0.993040 + 0.117780i \(0.0375779\pi\)
−0.993040 + 0.117780i \(0.962422\pi\)
\(390\) 0 0
\(391\) − 132.807i − 0.339659i
\(392\) 0 0
\(393\) 99.8823 0.254154
\(394\) 0 0
\(395\) 278.387 0.704777
\(396\) 0 0
\(397\) 384.354i 0.968147i 0.875027 + 0.484074i \(0.160843\pi\)
−0.875027 + 0.484074i \(0.839157\pi\)
\(398\) 0 0
\(399\) 45.6656i 0.114450i
\(400\) 0 0
\(401\) −416.545 −1.03877 −0.519383 0.854542i \(-0.673838\pi\)
−0.519383 + 0.854542i \(0.673838\pi\)
\(402\) 0 0
\(403\) 186.715 0.463313
\(404\) 0 0
\(405\) 94.0983i 0.232341i
\(406\) 0 0
\(407\) − 220.393i − 0.541507i
\(408\) 0 0
\(409\) −764.354 −1.86884 −0.934419 0.356177i \(-0.884080\pi\)
−0.934419 + 0.356177i \(0.884080\pi\)
\(410\) 0 0
\(411\) −237.528 −0.577927
\(412\) 0 0
\(413\) 23.8297i 0.0576991i
\(414\) 0 0
\(415\) 359.230i 0.865614i
\(416\) 0 0
\(417\) 8.17029 0.0195930
\(418\) 0 0
\(419\) 117.613 0.280699 0.140350 0.990102i \(-0.455177\pi\)
0.140350 + 0.990102i \(0.455177\pi\)
\(420\) 0 0
\(421\) − 429.915i − 1.02118i −0.859826 0.510588i \(-0.829428\pi\)
0.859826 0.510588i \(-0.170572\pi\)
\(422\) 0 0
\(423\) − 474.371i − 1.12144i
\(424\) 0 0
\(425\) −34.7214 −0.0816973
\(426\) 0 0
\(427\) 1.47524 0.00345490
\(428\) 0 0
\(429\) 76.4334i 0.178166i
\(430\) 0 0
\(431\) − 596.466i − 1.38391i −0.721940 0.691956i \(-0.756749\pi\)
0.721940 0.691956i \(-0.243251\pi\)
\(432\) 0 0
\(433\) −678.551 −1.56709 −0.783546 0.621333i \(-0.786591\pi\)
−0.783546 + 0.621333i \(0.786591\pi\)
\(434\) 0 0
\(435\) −58.1966 −0.133785
\(436\) 0 0
\(437\) 571.607i 1.30802i
\(438\) 0 0
\(439\) 324.774i 0.739804i 0.929071 + 0.369902i \(0.120609\pi\)
−0.929071 + 0.369902i \(0.879391\pi\)
\(440\) 0 0
\(441\) −354.718 −0.804350
\(442\) 0 0
\(443\) 49.4064 0.111527 0.0557634 0.998444i \(-0.482241\pi\)
0.0557634 + 0.998444i \(0.482241\pi\)
\(444\) 0 0
\(445\) − 103.358i − 0.232264i
\(446\) 0 0
\(447\) 246.971i 0.552507i
\(448\) 0 0
\(449\) −186.859 −0.416167 −0.208084 0.978111i \(-0.566723\pi\)
−0.208084 + 0.978111i \(0.566723\pi\)
\(450\) 0 0
\(451\) 663.724 1.47167
\(452\) 0 0
\(453\) 65.8235i 0.145306i
\(454\) 0 0
\(455\) 14.9706i 0.0329024i
\(456\) 0 0
\(457\) 645.214 1.41185 0.705923 0.708289i \(-0.250532\pi\)
0.705923 + 0.708289i \(0.250532\pi\)
\(458\) 0 0
\(459\) 141.390 0.308039
\(460\) 0 0
\(461\) − 10.7864i − 0.0233978i −0.999932 0.0116989i \(-0.996276\pi\)
0.999932 0.0116989i \(-0.00372397\pi\)
\(462\) 0 0
\(463\) 594.233i 1.28344i 0.766939 + 0.641720i \(0.221779\pi\)
−0.766939 + 0.641720i \(0.778221\pi\)
\(464\) 0 0
\(465\) 95.2786 0.204900
\(466\) 0 0
\(467\) −246.148 −0.527083 −0.263542 0.964648i \(-0.584891\pi\)
−0.263542 + 0.964648i \(0.584891\pi\)
\(468\) 0 0
\(469\) 6.19660i 0.0132124i
\(470\) 0 0
\(471\) 54.1440i 0.114955i
\(472\) 0 0
\(473\) −716.539 −1.51488
\(474\) 0 0
\(475\) 149.443 0.314616
\(476\) 0 0
\(477\) 733.299i 1.53731i
\(478\) 0 0
\(479\) − 722.610i − 1.50858i −0.656541 0.754290i \(-0.727981\pi\)
0.656541 0.754290i \(-0.272019\pi\)
\(480\) 0 0
\(481\) −104.563 −0.217388
\(482\) 0 0
\(483\) −29.2198 −0.0604965
\(484\) 0 0
\(485\) 298.138i 0.614717i
\(486\) 0 0
\(487\) 482.403i 0.990561i 0.868733 + 0.495281i \(0.164935\pi\)
−0.868733 + 0.495281i \(0.835065\pi\)
\(488\) 0 0
\(489\) −233.252 −0.476999
\(490\) 0 0
\(491\) 235.967 0.480585 0.240293 0.970700i \(-0.422757\pi\)
0.240293 + 0.970700i \(0.422757\pi\)
\(492\) 0 0
\(493\) − 146.217i − 0.296586i
\(494\) 0 0
\(495\) − 190.748i − 0.385349i
\(496\) 0 0
\(497\) 104.276 0.209810
\(498\) 0 0
\(499\) −591.331 −1.18503 −0.592516 0.805558i \(-0.701865\pi\)
−0.592516 + 0.805558i \(0.701865\pi\)
\(500\) 0 0
\(501\) 322.249i 0.643212i
\(502\) 0 0
\(503\) − 708.843i − 1.40923i −0.709590 0.704615i \(-0.751120\pi\)
0.709590 0.704615i \(-0.248880\pi\)
\(504\) 0 0
\(505\) 111.305 0.220406
\(506\) 0 0
\(507\) −172.632 −0.340498
\(508\) 0 0
\(509\) − 801.489i − 1.57463i −0.616548 0.787317i \(-0.711469\pi\)
0.616548 0.787317i \(-0.288531\pi\)
\(510\) 0 0
\(511\) 87.4164i 0.171069i
\(512\) 0 0
\(513\) −608.551 −1.18626
\(514\) 0 0
\(515\) −439.846 −0.854070
\(516\) 0 0
\(517\) 724.774i 1.40188i
\(518\) 0 0
\(519\) 35.4690i 0.0683411i
\(520\) 0 0
\(521\) −285.882 −0.548718 −0.274359 0.961627i \(-0.588466\pi\)
−0.274359 + 0.961627i \(0.588466\pi\)
\(522\) 0 0
\(523\) 493.013 0.942664 0.471332 0.881956i \(-0.343773\pi\)
0.471332 + 0.881956i \(0.343773\pi\)
\(524\) 0 0
\(525\) 7.63932i 0.0145511i
\(526\) 0 0
\(527\) 239.384i 0.454239i
\(528\) 0 0
\(529\) 163.249 0.308600
\(530\) 0 0
\(531\) −144.053 −0.271286
\(532\) 0 0
\(533\) − 314.898i − 0.590803i
\(534\) 0 0
\(535\) − 33.3212i − 0.0622826i
\(536\) 0 0
\(537\) −118.046 −0.219826
\(538\) 0 0
\(539\) 541.961 1.00549
\(540\) 0 0
\(541\) 906.774i 1.67611i 0.545588 + 0.838054i \(0.316306\pi\)
−0.545588 + 0.838054i \(0.683694\pi\)
\(542\) 0 0
\(543\) 218.642i 0.402656i
\(544\) 0 0
\(545\) 390.997 0.717425
\(546\) 0 0
\(547\) −111.420 −0.203693 −0.101847 0.994800i \(-0.532475\pi\)
−0.101847 + 0.994800i \(0.532475\pi\)
\(548\) 0 0
\(549\) 8.91796i 0.0162440i
\(550\) 0 0
\(551\) 629.325i 1.14215i
\(552\) 0 0
\(553\) 153.889 0.278279
\(554\) 0 0
\(555\) −53.3576 −0.0961398
\(556\) 0 0
\(557\) 462.255i 0.829902i 0.909844 + 0.414951i \(0.136201\pi\)
−0.909844 + 0.414951i \(0.863799\pi\)
\(558\) 0 0
\(559\) 339.955i 0.608149i
\(560\) 0 0
\(561\) −97.9938 −0.174677
\(562\) 0 0
\(563\) −640.555 −1.13775 −0.568876 0.822423i \(-0.692622\pi\)
−0.568876 + 0.822423i \(0.692622\pi\)
\(564\) 0 0
\(565\) − 73.9149i − 0.130823i
\(566\) 0 0
\(567\) 52.0163i 0.0917394i
\(568\) 0 0
\(569\) −817.915 −1.43746 −0.718730 0.695289i \(-0.755276\pi\)
−0.718730 + 0.695289i \(0.755276\pi\)
\(570\) 0 0
\(571\) −470.642 −0.824242 −0.412121 0.911129i \(-0.635212\pi\)
−0.412121 + 0.911129i \(0.635212\pi\)
\(572\) 0 0
\(573\) − 286.728i − 0.500397i
\(574\) 0 0
\(575\) 95.6231i 0.166301i
\(576\) 0 0
\(577\) 1051.17 1.82178 0.910890 0.412649i \(-0.135396\pi\)
0.910890 + 0.412649i \(0.135396\pi\)
\(578\) 0 0
\(579\) −208.138 −0.359478
\(580\) 0 0
\(581\) 198.577i 0.341786i
\(582\) 0 0
\(583\) − 1120.38i − 1.92175i
\(584\) 0 0
\(585\) −90.4984 −0.154698
\(586\) 0 0
\(587\) 267.708 0.456062 0.228031 0.973654i \(-0.426771\pi\)
0.228031 + 0.973654i \(0.426771\pi\)
\(588\) 0 0
\(589\) − 1030.32i − 1.74927i
\(590\) 0 0
\(591\) 38.4195i 0.0650076i
\(592\) 0 0
\(593\) −168.440 −0.284047 −0.142023 0.989863i \(-0.545361\pi\)
−0.142023 + 0.989863i \(0.545361\pi\)
\(594\) 0 0
\(595\) −19.1935 −0.0322580
\(596\) 0 0
\(597\) 152.997i 0.256276i
\(598\) 0 0
\(599\) 626.715i 1.04627i 0.852250 + 0.523135i \(0.175237\pi\)
−0.852250 + 0.523135i \(0.824763\pi\)
\(600\) 0 0
\(601\) 359.252 0.597758 0.298879 0.954291i \(-0.403387\pi\)
0.298879 + 0.954291i \(0.403387\pi\)
\(602\) 0 0
\(603\) −37.4590 −0.0621210
\(604\) 0 0
\(605\) 20.8723i 0.0344996i
\(606\) 0 0
\(607\) − 679.728i − 1.11982i −0.828555 0.559908i \(-0.810836\pi\)
0.828555 0.559908i \(-0.189164\pi\)
\(608\) 0 0
\(609\) −32.1703 −0.0528248
\(610\) 0 0
\(611\) 343.862 0.562786
\(612\) 0 0
\(613\) − 748.958i − 1.22179i −0.791711 0.610896i \(-0.790809\pi\)
0.791711 0.610896i \(-0.209191\pi\)
\(614\) 0 0
\(615\) − 160.689i − 0.261283i
\(616\) 0 0
\(617\) 947.876 1.53627 0.768133 0.640290i \(-0.221186\pi\)
0.768133 + 0.640290i \(0.221186\pi\)
\(618\) 0 0
\(619\) 1074.32 1.73558 0.867788 0.496934i \(-0.165541\pi\)
0.867788 + 0.496934i \(0.165541\pi\)
\(620\) 0 0
\(621\) − 389.390i − 0.627037i
\(622\) 0 0
\(623\) − 57.1347i − 0.0917089i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 421.771 0.672681
\(628\) 0 0
\(629\) − 134.059i − 0.213130i
\(630\) 0 0
\(631\) − 1061.67i − 1.68253i −0.540627 0.841263i \(-0.681813\pi\)
0.540627 0.841263i \(-0.318187\pi\)
\(632\) 0 0
\(633\) 42.3344 0.0668789
\(634\) 0 0
\(635\) 209.597 0.330074
\(636\) 0 0
\(637\) − 257.128i − 0.403655i
\(638\) 0 0
\(639\) 630.354i 0.986470i
\(640\) 0 0
\(641\) 497.404 0.775981 0.387991 0.921663i \(-0.373169\pi\)
0.387991 + 0.921663i \(0.373169\pi\)
\(642\) 0 0
\(643\) −604.397 −0.939964 −0.469982 0.882676i \(-0.655740\pi\)
−0.469982 + 0.882676i \(0.655740\pi\)
\(644\) 0 0
\(645\) 173.475i 0.268954i
\(646\) 0 0
\(647\) − 693.151i − 1.07133i −0.844430 0.535665i \(-0.820061\pi\)
0.844430 0.535665i \(-0.179939\pi\)
\(648\) 0 0
\(649\) 220.093 0.339126
\(650\) 0 0
\(651\) 52.6687 0.0809044
\(652\) 0 0
\(653\) 948.853i 1.45307i 0.687131 + 0.726534i \(0.258870\pi\)
−0.687131 + 0.726534i \(0.741130\pi\)
\(654\) 0 0
\(655\) − 180.689i − 0.275861i
\(656\) 0 0
\(657\) −528.440 −0.804322
\(658\) 0 0
\(659\) 889.260 1.34941 0.674704 0.738088i \(-0.264271\pi\)
0.674704 + 0.738088i \(0.264271\pi\)
\(660\) 0 0
\(661\) − 664.354i − 1.00507i −0.864555 0.502537i \(-0.832400\pi\)
0.864555 0.502537i \(-0.167600\pi\)
\(662\) 0 0
\(663\) 46.4922i 0.0701240i
\(664\) 0 0
\(665\) 82.6099 0.124225
\(666\) 0 0
\(667\) −402.683 −0.603722
\(668\) 0 0
\(669\) 250.906i 0.375046i
\(670\) 0 0
\(671\) − 13.6254i − 0.0203062i
\(672\) 0 0
\(673\) 429.437 0.638093 0.319046 0.947739i \(-0.396637\pi\)
0.319046 + 0.947739i \(0.396637\pi\)
\(674\) 0 0
\(675\) −101.803 −0.150820
\(676\) 0 0
\(677\) 336.918i 0.497663i 0.968547 + 0.248832i \(0.0800466\pi\)
−0.968547 + 0.248832i \(0.919953\pi\)
\(678\) 0 0
\(679\) 164.807i 0.242719i
\(680\) 0 0
\(681\) 287.023 0.421473
\(682\) 0 0
\(683\) −818.200 −1.19795 −0.598975 0.800767i \(-0.704425\pi\)
−0.598975 + 0.800767i \(0.704425\pi\)
\(684\) 0 0
\(685\) 429.692i 0.627288i
\(686\) 0 0
\(687\) 201.961i 0.293976i
\(688\) 0 0
\(689\) −531.554 −0.771486
\(690\) 0 0
\(691\) 356.689 0.516192 0.258096 0.966119i \(-0.416905\pi\)
0.258096 + 0.966119i \(0.416905\pi\)
\(692\) 0 0
\(693\) − 105.443i − 0.152154i
\(694\) 0 0
\(695\) − 14.7802i − 0.0212665i
\(696\) 0 0
\(697\) 403.724 0.579232
\(698\) 0 0
\(699\) −13.8684 −0.0198404
\(700\) 0 0
\(701\) − 50.0851i − 0.0714481i −0.999362 0.0357241i \(-0.988626\pi\)
0.999362 0.0357241i \(-0.0113737\pi\)
\(702\) 0 0
\(703\) 576.997i 0.820764i
\(704\) 0 0
\(705\) 175.469 0.248892
\(706\) 0 0
\(707\) 61.5279 0.0870267
\(708\) 0 0
\(709\) − 698.604i − 0.985337i −0.870217 0.492668i \(-0.836022\pi\)
0.870217 0.492668i \(-0.163978\pi\)
\(710\) 0 0
\(711\) 930.269i 1.30840i
\(712\) 0 0
\(713\) 659.266 0.924637
\(714\) 0 0
\(715\) 138.269 0.193384
\(716\) 0 0
\(717\) − 267.882i − 0.373616i
\(718\) 0 0
\(719\) − 246.387i − 0.342680i −0.985212 0.171340i \(-0.945190\pi\)
0.985212 0.171340i \(-0.0548097\pi\)
\(720\) 0 0
\(721\) −243.141 −0.337227
\(722\) 0 0
\(723\) 60.7415 0.0840131
\(724\) 0 0
\(725\) 105.279i 0.145212i
\(726\) 0 0
\(727\) 256.134i 0.352316i 0.984362 + 0.176158i \(0.0563670\pi\)
−0.984362 + 0.176158i \(0.943633\pi\)
\(728\) 0 0
\(729\) −87.9381 −0.120628
\(730\) 0 0
\(731\) −435.850 −0.596238
\(732\) 0 0
\(733\) − 897.574i − 1.22452i −0.790656 0.612261i \(-0.790260\pi\)
0.790656 0.612261i \(-0.209740\pi\)
\(734\) 0 0
\(735\) − 131.210i − 0.178517i
\(736\) 0 0
\(737\) 57.2322 0.0776557
\(738\) 0 0
\(739\) 268.486 0.363310 0.181655 0.983362i \(-0.441855\pi\)
0.181655 + 0.983362i \(0.441855\pi\)
\(740\) 0 0
\(741\) − 200.105i − 0.270048i
\(742\) 0 0
\(743\) 612.049i 0.823753i 0.911240 + 0.411877i \(0.135127\pi\)
−0.911240 + 0.411877i \(0.864873\pi\)
\(744\) 0 0
\(745\) 446.774 0.599697
\(746\) 0 0
\(747\) −1200.42 −1.60698
\(748\) 0 0
\(749\) − 18.4195i − 0.0245921i
\(750\) 0 0
\(751\) 142.485i 0.189726i 0.995490 + 0.0948632i \(0.0302414\pi\)
−0.995490 + 0.0948632i \(0.969759\pi\)
\(752\) 0 0
\(753\) −349.220 −0.463771
\(754\) 0 0
\(755\) 119.076 0.157716
\(756\) 0 0
\(757\) − 636.342i − 0.840610i −0.907383 0.420305i \(-0.861923\pi\)
0.907383 0.420305i \(-0.138077\pi\)
\(758\) 0 0
\(759\) 269.876i 0.355568i
\(760\) 0 0
\(761\) −591.666 −0.777484 −0.388742 0.921347i \(-0.627090\pi\)
−0.388742 + 0.921347i \(0.627090\pi\)
\(762\) 0 0
\(763\) 216.138 0.283274
\(764\) 0 0
\(765\) − 116.026i − 0.151668i
\(766\) 0 0
\(767\) − 104.421i − 0.136142i
\(768\) 0 0
\(769\) 0.216701 0.000281796 0 0.000140898 1.00000i \(-0.499955\pi\)
0.000140898 1.00000i \(0.499955\pi\)
\(770\) 0 0
\(771\) −247.141 −0.320546
\(772\) 0 0
\(773\) 762.807i 0.986813i 0.869799 + 0.493407i \(0.164249\pi\)
−0.869799 + 0.493407i \(0.835751\pi\)
\(774\) 0 0
\(775\) − 172.361i − 0.222401i
\(776\) 0 0
\(777\) −29.4953 −0.0379605
\(778\) 0 0
\(779\) −1737.65 −2.23062
\(780\) 0 0
\(781\) − 963.096i − 1.23316i
\(782\) 0 0
\(783\) − 428.709i − 0.547521i
\(784\) 0 0
\(785\) 97.9474 0.124774
\(786\) 0 0
\(787\) −1311.80 −1.66684 −0.833419 0.552642i \(-0.813620\pi\)
−0.833419 + 0.552642i \(0.813620\pi\)
\(788\) 0 0
\(789\) − 306.249i − 0.388149i
\(790\) 0 0
\(791\) − 40.8591i − 0.0516550i
\(792\) 0 0
\(793\) −6.46446 −0.00815190
\(794\) 0 0
\(795\) −271.246 −0.341190
\(796\) 0 0
\(797\) 1341.85i 1.68363i 0.539769 + 0.841813i \(0.318511\pi\)
−0.539769 + 0.841813i \(0.681489\pi\)
\(798\) 0 0
\(799\) 440.859i 0.551764i
\(800\) 0 0
\(801\) 345.384 0.431191
\(802\) 0 0
\(803\) 807.384 1.00546
\(804\) 0 0
\(805\) 52.8591i 0.0656635i
\(806\) 0 0
\(807\) 16.5836i 0.0205497i
\(808\) 0 0
\(809\) 53.8948 0.0666190 0.0333095 0.999445i \(-0.489395\pi\)
0.0333095 + 0.999445i \(0.489395\pi\)
\(810\) 0 0
\(811\) 20.9644 0.0258500 0.0129250 0.999916i \(-0.495886\pi\)
0.0129250 + 0.999916i \(0.495886\pi\)
\(812\) 0 0
\(813\) 73.5078i 0.0904155i
\(814\) 0 0
\(815\) 421.957i 0.517739i
\(816\) 0 0
\(817\) 1875.92 2.29611
\(818\) 0 0
\(819\) −50.0263 −0.0610822
\(820\) 0 0
\(821\) − 363.240i − 0.442436i −0.975224 0.221218i \(-0.928997\pi\)
0.975224 0.221218i \(-0.0710032\pi\)
\(822\) 0 0
\(823\) 1487.42i 1.80732i 0.428256 + 0.903658i \(0.359128\pi\)
−0.428256 + 0.903658i \(0.640872\pi\)
\(824\) 0 0
\(825\) 70.5573 0.0855240
\(826\) 0 0
\(827\) 948.981 1.14750 0.573749 0.819031i \(-0.305489\pi\)
0.573749 + 0.819031i \(0.305489\pi\)
\(828\) 0 0
\(829\) − 1114.06i − 1.34386i −0.740614 0.671930i \(-0.765465\pi\)
0.740614 0.671930i \(-0.234535\pi\)
\(830\) 0 0
\(831\) − 631.457i − 0.759876i
\(832\) 0 0
\(833\) 329.659 0.395750
\(834\) 0 0
\(835\) 582.954 0.698149
\(836\) 0 0
\(837\) 701.876i 0.838562i
\(838\) 0 0
\(839\) 145.272i 0.173149i 0.996245 + 0.0865747i \(0.0275921\pi\)
−0.996245 + 0.0865747i \(0.972408\pi\)
\(840\) 0 0
\(841\) 397.656 0.472837
\(842\) 0 0
\(843\) 604.807 0.717445
\(844\) 0 0
\(845\) 312.295i 0.369580i
\(846\) 0 0
\(847\) 11.5379i 0.0136221i
\(848\) 0 0
\(849\) −259.862 −0.306080
\(850\) 0 0
\(851\) −369.200 −0.433842
\(852\) 0 0
\(853\) − 127.423i − 0.149382i −0.997207 0.0746909i \(-0.976203\pi\)
0.997207 0.0746909i \(-0.0237970\pi\)
\(854\) 0 0
\(855\) 499.384i 0.584075i
\(856\) 0 0
\(857\) 576.715 0.672946 0.336473 0.941693i \(-0.390766\pi\)
0.336473 + 0.941693i \(0.390766\pi\)
\(858\) 0 0
\(859\) 513.155 0.597386 0.298693 0.954349i \(-0.403449\pi\)
0.298693 + 0.954349i \(0.403449\pi\)
\(860\) 0 0
\(861\) − 88.8266i − 0.103167i
\(862\) 0 0
\(863\) − 774.488i − 0.897437i −0.893673 0.448719i \(-0.851881\pi\)
0.893673 0.448719i \(-0.148119\pi\)
\(864\) 0 0
\(865\) 64.1641 0.0741781
\(866\) 0 0
\(867\) 297.617 0.343272
\(868\) 0 0
\(869\) − 1421.33i − 1.63559i
\(870\) 0 0
\(871\) − 27.1533i − 0.0311749i
\(872\) 0 0
\(873\) −996.269 −1.14120
\(874\) 0 0
\(875\) 13.8197 0.0157939
\(876\) 0 0
\(877\) − 1335.13i − 1.52239i −0.648524 0.761194i \(-0.724613\pi\)
0.648524 0.761194i \(-0.275387\pi\)
\(878\) 0 0
\(879\) − 257.686i − 0.293158i
\(880\) 0 0
\(881\) 29.7570 0.0337764 0.0168882 0.999857i \(-0.494624\pi\)
0.0168882 + 0.999857i \(0.494624\pi\)
\(882\) 0 0
\(883\) 105.544 0.119529 0.0597645 0.998213i \(-0.480965\pi\)
0.0597645 + 0.998213i \(0.480965\pi\)
\(884\) 0 0
\(885\) − 53.2849i − 0.0602089i
\(886\) 0 0
\(887\) 60.2268i 0.0678994i 0.999424 + 0.0339497i \(0.0108086\pi\)
−0.999424 + 0.0339497i \(0.989191\pi\)
\(888\) 0 0
\(889\) 115.862 0.130329
\(890\) 0 0
\(891\) 480.426 0.539198
\(892\) 0 0
\(893\) − 1897.48i − 2.12484i
\(894\) 0 0
\(895\) 213.548i 0.238601i
\(896\) 0 0
\(897\) 128.040 0.142743
\(898\) 0 0
\(899\) 725.836 0.807381
\(900\) 0 0
\(901\) − 681.495i − 0.756377i
\(902\) 0 0
\(903\) 95.8948i 0.106196i
\(904\) 0 0
\(905\) 395.528 0.437047
\(906\) 0 0
\(907\) 155.473 0.171414 0.0857072 0.996320i \(-0.472685\pi\)
0.0857072 + 0.996320i \(0.472685\pi\)
\(908\) 0 0
\(909\) 371.941i 0.409176i
\(910\) 0 0
\(911\) − 686.630i − 0.753710i −0.926272 0.376855i \(-0.877005\pi\)
0.926272 0.376855i \(-0.122995\pi\)
\(912\) 0 0
\(913\) 1834.07 2.00884
\(914\) 0 0
\(915\) −3.29874 −0.00360518
\(916\) 0 0
\(917\) − 99.8823i − 0.108923i
\(918\) 0 0
\(919\) − 1339.16i − 1.45719i −0.684943 0.728597i \(-0.740173\pi\)
0.684943 0.728597i \(-0.259827\pi\)
\(920\) 0 0
\(921\) −283.757 −0.308097
\(922\) 0 0
\(923\) −456.932 −0.495051
\(924\) 0 0
\(925\) 96.5248i 0.104351i
\(926\) 0 0
\(927\) − 1469.81i − 1.58555i
\(928\) 0 0
\(929\) −636.302 −0.684932 −0.342466 0.939530i \(-0.611262\pi\)
−0.342466 + 0.939530i \(0.611262\pi\)
\(930\) 0 0
\(931\) −1418.87 −1.52403
\(932\) 0 0
\(933\) − 434.715i − 0.465933i
\(934\) 0 0
\(935\) 177.272i 0.189596i
\(936\) 0 0
\(937\) 310.210 0.331068 0.165534 0.986204i \(-0.447065\pi\)
0.165534 + 0.986204i \(0.447065\pi\)
\(938\) 0 0
\(939\) 517.358 0.550967
\(940\) 0 0
\(941\) − 1322.66i − 1.40559i −0.711394 0.702793i \(-0.751936\pi\)
0.711394 0.702793i \(-0.248064\pi\)
\(942\) 0 0
\(943\) − 1111.86i − 1.17907i
\(944\) 0 0
\(945\) −56.2755 −0.0595508
\(946\) 0 0
\(947\) 724.883 0.765452 0.382726 0.923862i \(-0.374985\pi\)
0.382726 + 0.923862i \(0.374985\pi\)
\(948\) 0 0
\(949\) − 383.056i − 0.403641i
\(950\) 0 0
\(951\) − 433.961i − 0.456321i
\(952\) 0 0
\(953\) 298.223 0.312931 0.156465 0.987683i \(-0.449990\pi\)
0.156465 + 0.987683i \(0.449990\pi\)
\(954\) 0 0
\(955\) −518.695 −0.543136
\(956\) 0 0
\(957\) 297.127i 0.310478i
\(958\) 0 0
\(959\) 237.528i 0.247683i
\(960\) 0 0
\(961\) −227.328 −0.236554
\(962\) 0 0
\(963\) 111.348 0.115626
\(964\) 0 0
\(965\) 376.525i 0.390181i
\(966\) 0 0
\(967\) 249.236i 0.257742i 0.991661 + 0.128871i \(0.0411352\pi\)
−0.991661 + 0.128871i \(0.958865\pi\)
\(968\) 0 0
\(969\) 256.551 0.264759
\(970\) 0 0
\(971\) 339.246 0.349378 0.174689 0.984624i \(-0.444108\pi\)
0.174689 + 0.984624i \(0.444108\pi\)
\(972\) 0 0
\(973\) − 8.17029i − 0.00839701i
\(974\) 0 0
\(975\) − 33.4752i − 0.0343336i
\(976\) 0 0
\(977\) −40.8854 −0.0418479 −0.0209240 0.999781i \(-0.506661\pi\)
−0.0209240 + 0.999781i \(0.506661\pi\)
\(978\) 0 0
\(979\) −527.700 −0.539019
\(980\) 0 0
\(981\) 1306.57i 1.33188i
\(982\) 0 0
\(983\) − 5.56423i − 0.00566045i −0.999996 0.00283023i \(-0.999099\pi\)
0.999996 0.00283023i \(-0.000900890\pi\)
\(984\) 0 0
\(985\) 69.5016 0.0705600
\(986\) 0 0
\(987\) 96.9969 0.0982745
\(988\) 0 0
\(989\) 1200.34i 1.21369i
\(990\) 0 0
\(991\) 1562.45i 1.57664i 0.615267 + 0.788319i \(0.289048\pi\)
−0.615267 + 0.788319i \(0.710952\pi\)
\(992\) 0 0
\(993\) 779.777 0.785274
\(994\) 0 0
\(995\) 276.774 0.278165
\(996\) 0 0
\(997\) − 704.224i − 0.706343i −0.935559 0.353172i \(-0.885103\pi\)
0.935559 0.353172i \(-0.114897\pi\)
\(998\) 0 0
\(999\) − 393.062i − 0.393455i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.3.g.c.1151.2 4
4.3 odd 2 1280.3.g.b.1151.4 4
8.3 odd 2 inner 1280.3.g.c.1151.1 4
8.5 even 2 1280.3.g.b.1151.3 4
16.3 odd 4 160.3.b.b.31.3 yes 4
16.5 even 4 320.3.b.d.191.3 4
16.11 odd 4 320.3.b.d.191.2 4
16.13 even 4 160.3.b.b.31.2 4
48.5 odd 4 2880.3.e.h.2431.3 4
48.11 even 4 2880.3.e.h.2431.4 4
48.29 odd 4 1440.3.e.a.991.1 4
48.35 even 4 1440.3.e.a.991.2 4
80.3 even 4 800.3.h.h.799.2 4
80.13 odd 4 800.3.h.e.799.3 4
80.19 odd 4 800.3.b.g.351.2 4
80.27 even 4 1600.3.h.k.1599.1 4
80.29 even 4 800.3.b.g.351.3 4
80.37 odd 4 1600.3.h.f.1599.4 4
80.43 even 4 1600.3.h.f.1599.3 4
80.53 odd 4 1600.3.h.k.1599.2 4
80.59 odd 4 1600.3.b.u.1151.3 4
80.67 even 4 800.3.h.e.799.4 4
80.69 even 4 1600.3.b.u.1151.2 4
80.77 odd 4 800.3.h.h.799.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.3.b.b.31.2 4 16.13 even 4
160.3.b.b.31.3 yes 4 16.3 odd 4
320.3.b.d.191.2 4 16.11 odd 4
320.3.b.d.191.3 4 16.5 even 4
800.3.b.g.351.2 4 80.19 odd 4
800.3.b.g.351.3 4 80.29 even 4
800.3.h.e.799.3 4 80.13 odd 4
800.3.h.e.799.4 4 80.67 even 4
800.3.h.h.799.1 4 80.77 odd 4
800.3.h.h.799.2 4 80.3 even 4
1280.3.g.b.1151.3 4 8.5 even 2
1280.3.g.b.1151.4 4 4.3 odd 2
1280.3.g.c.1151.1 4 8.3 odd 2 inner
1280.3.g.c.1151.2 4 1.1 even 1 trivial
1440.3.e.a.991.1 4 48.29 odd 4
1440.3.e.a.991.2 4 48.35 even 4
1600.3.b.u.1151.2 4 80.69 even 4
1600.3.b.u.1151.3 4 80.59 odd 4
1600.3.h.f.1599.3 4 80.43 even 4
1600.3.h.f.1599.4 4 80.37 odd 4
1600.3.h.k.1599.1 4 80.27 even 4
1600.3.h.k.1599.2 4 80.53 odd 4
2880.3.e.h.2431.3 4 48.5 odd 4
2880.3.e.h.2431.4 4 48.11 even 4