Defining parameters
Level: | \( N \) | \(=\) | \( 1280 = 2^{8} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1280.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(768\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1280, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 600 | 148 | 452 |
Cusp forms | 552 | 140 | 412 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1280, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1280, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1280, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(640, [\chi])\)\(^{\oplus 2}\)