Defining parameters
Level: | \( N \) | \(=\) | \( 1296 = 2^{4} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1296.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 30 \) | ||
Sturm bound: | \(864\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1296))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 684 | 74 | 610 |
Cusp forms | 612 | 70 | 542 |
Eisenstein series | 72 | 4 | 68 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(19\) |
\(+\) | \(-\) | \(-\) | \(17\) |
\(-\) | \(+\) | \(-\) | \(16\) |
\(-\) | \(-\) | \(+\) | \(18\) |
Plus space | \(+\) | \(37\) | |
Minus space | \(-\) | \(33\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1296))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1296))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1296)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(324))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(432))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(648))\)\(^{\oplus 2}\)