Properties

Label 13.6.e
Level 1313
Weight 66
Character orbit 13.e
Rep. character χ13(4,)\chi_{13}(4,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 1010
Newform subspaces 11
Sturm bound 77
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 13 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 13.e (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 77
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M6(13,[χ])M_{6}(13, [\chi]).

Total New Old
Modular forms 14 14 0
Cusp forms 10 10 0
Eisenstein series 4 4 0

Trace form

10q3q210q3+63q4+168q6276q7215q9+115q10240q11164q122015q13+3444q14330q152137q16+1851q17+4626q19+2625q20+488517q98+O(q100) 10 q - 3 q^{2} - 10 q^{3} + 63 q^{4} + 168 q^{6} - 276 q^{7} - 215 q^{9} + 115 q^{10} - 240 q^{11} - 164 q^{12} - 2015 q^{13} + 3444 q^{14} - 330 q^{15} - 2137 q^{16} + 1851 q^{17} + 4626 q^{19} + 2625 q^{20}+ \cdots - 488517 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(13,[χ])S_{6}^{\mathrm{new}}(13, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
13.6.e.a 13.e 13.e 1010 2.0852.085 Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots) None 13.6.e.a 3-3 10-10 00 276-276 SU(2)[C6]\mathrm{SU}(2)[C_{6}] qβ3q2+(22β2β5β6)q3+q-\beta _{3}q^{2}+(-2-2\beta _{2}-\beta _{5}-\beta _{6})q^{3}+\cdots