Defining parameters
Level: | \( N \) | \(=\) | \( 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 13.e (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(7\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(13, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 14 | 0 |
Cusp forms | 10 | 10 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(13, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
13.6.e.a | $10$ | $2.085$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-3\) | \(-10\) | \(0\) | \(-276\) | \(q-\beta _{3}q^{2}+(-2-2\beta _{2}-\beta _{5}-\beta _{6})q^{3}+\cdots\) |