Properties

Label 13.6.e
Level $13$
Weight $6$
Character orbit 13.e
Rep. character $\chi_{13}(4,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $10$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 13.e (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(13, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 10 10 0
Eisenstein series 4 4 0

Trace form

\( 10 q - 3 q^{2} - 10 q^{3} + 63 q^{4} + 168 q^{6} - 276 q^{7} - 215 q^{9} + 115 q^{10} - 240 q^{11} - 164 q^{12} - 2015 q^{13} + 3444 q^{14} - 330 q^{15} - 2137 q^{16} + 1851 q^{17} + 4626 q^{19} + 2625 q^{20}+ \cdots - 488517 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(13, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
13.6.e.a 13.e 13.e $10$ $2.085$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 13.6.e.a \(-3\) \(-10\) \(0\) \(-276\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{3}q^{2}+(-2-2\beta _{2}-\beta _{5}-\beta _{6})q^{3}+\cdots\)