Properties

Label 1300.2.c
Level $1300$
Weight $2$
Character orbit 1300.c
Rep. character $\chi_{1300}(1249,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $6$
Sturm bound $420$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1300 = 2^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1300.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(420\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1300, [\chi])\).

Total New Old
Modular forms 228 18 210
Cusp forms 192 18 174
Eisenstein series 36 0 36

Trace form

\( 18 q - 30 q^{9} + 4 q^{19} + 20 q^{21} - 4 q^{29} - 4 q^{31} - 16 q^{41} - 38 q^{49} - 32 q^{51} + 44 q^{59} + 36 q^{61} - 36 q^{69} + 24 q^{71} + 4 q^{79} + 114 q^{81} - 32 q^{89} - 12 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1300, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1300.2.c.a 1300.c 5.b $2$ $10.381$ \(\Q(\sqrt{-1}) \) None 260.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}-2 i q^{7}-q^{9}+4 q^{11}+\cdots\)
1300.2.c.b 1300.c 5.b $2$ $10.381$ \(\Q(\sqrt{-1}) \) None 1300.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 i q^{7}+2 q^{9}-2 q^{11}+\cdots\)
1300.2.c.c 1300.c 5.b $2$ $10.381$ \(\Q(\sqrt{-1}) \) None 52.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{7}+3 q^{9}-2 q^{11}-i q^{13}+\cdots\)
1300.2.c.d 1300.c 5.b $2$ $10.381$ \(\Q(\sqrt{-1}) \) None 1300.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{7}+3 q^{9}+3 q^{11}+i q^{13}+\cdots\)
1300.2.c.e 1300.c 5.b $4$ $10.381$ \(\Q(i, \sqrt{33})\) None 1300.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-\beta _{1}-\beta _{2})q^{7}+(-6+\beta _{3})q^{9}+\cdots\)
1300.2.c.f 1300.c 5.b $6$ $10.381$ 6.0.5089536.1 None 260.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}-\beta _{4})q^{3}+(-\beta _{4}-\beta _{5})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 2}\)