Defining parameters
Level: | \( N \) | \(=\) | \( 1300 = 2^{2} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1300.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(420\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1300, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 228 | 18 | 210 |
Cusp forms | 192 | 18 | 174 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1300, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1300.2.c.a | $2$ | $10.381$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2 i q^{3}-2 i q^{7}-q^{9}+4 q^{11}+\cdots\) |
1300.2.c.b | $2$ | $10.381$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{3}+2 i q^{7}+2 q^{9}-2 q^{11}+\cdots\) |
1300.2.c.c | $2$ | $10.381$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2 i q^{7}+3 q^{9}-2 q^{11}-i q^{13}+\cdots\) |
1300.2.c.d | $2$ | $10.381$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+3 i q^{7}+3 q^{9}+3 q^{11}+i q^{13}+\cdots\) |
1300.2.c.e | $4$ | $10.381$ | \(\Q(i, \sqrt{33})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+(-\beta _{1}-\beta _{2})q^{7}+(-6+\beta _{3})q^{9}+\cdots\) |
1300.2.c.f | $6$ | $10.381$ | 6.0.5089536.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{1}-\beta _{4})q^{3}+(-\beta _{4}-\beta _{5})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1300, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 2}\)