Properties

Label 1312.4.l
Level 13121312
Weight 44
Character orbit 1312.l
Rep. character χ1312(993,)\chi_{1312}(993,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 252252
Sturm bound 672672

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1312=2541 1312 = 2^{5} \cdot 41
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1312.l (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 41 41
Character field: Q(i)\Q(i)
Sturm bound: 672672

Dimensions

The following table gives the dimensions of various subspaces of M4(1312,[χ])M_{4}(1312, [\chi]).

Total New Old
Modular forms 1024 252 772
Cusp forms 992 252 740
Eisenstein series 32 0 32

Trace form

252q+92q13308q176564q25172q29+116q41+360q45572q532064q571400q65+2032q6922284q81+5768q85+2244q891824q93+2796q97+O(q100) 252 q + 92 q^{13} - 308 q^{17} - 6564 q^{25} - 172 q^{29} + 116 q^{41} + 360 q^{45} - 572 q^{53} - 2064 q^{57} - 1400 q^{65} + 2032 q^{69} - 22284 q^{81} + 5768 q^{85} + 2244 q^{89} - 1824 q^{93} + 2796 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(1312,[χ])S_{4}^{\mathrm{new}}(1312, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(1312,[χ])S_{4}^{\mathrm{old}}(1312, [\chi]) into lower level spaces

S4old(1312,[χ]) S_{4}^{\mathrm{old}}(1312, [\chi]) \simeq S4new(41,[χ])S_{4}^{\mathrm{new}}(41, [\chi])6^{\oplus 6}\oplusS4new(82,[χ])S_{4}^{\mathrm{new}}(82, [\chi])5^{\oplus 5}\oplusS4new(164,[χ])S_{4}^{\mathrm{new}}(164, [\chi])4^{\oplus 4}\oplusS4new(328,[χ])S_{4}^{\mathrm{new}}(328, [\chi])3^{\oplus 3}\oplusS4new(656,[χ])S_{4}^{\mathrm{new}}(656, [\chi])2^{\oplus 2}