Properties

Label 132.3.g
Level $132$
Weight $3$
Character orbit 132.g
Rep. character $\chi_{132}(67,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 132.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(132, [\chi])\).

Total New Old
Modular forms 52 20 32
Cusp forms 44 20 24
Eisenstein series 8 0 8

Trace form

\( 20 q - 4 q^{4} + 8 q^{5} - 12 q^{6} - 12 q^{8} - 60 q^{9} - 16 q^{10} - 8 q^{13} + 68 q^{14} + 52 q^{16} - 40 q^{17} + 44 q^{20} - 48 q^{21} - 36 q^{24} + 220 q^{25} - 36 q^{26} - 64 q^{28} + 40 q^{29}+ \cdots + 656 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(132, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
132.3.g.a 132.g 4.b $4$ $3.597$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 132.3.g.a \(-4\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{1})q^{2}+\beta _{1}q^{3}+(-2-2\beta _{1}+\cdots)q^{4}+\cdots\)
132.3.g.b 132.g 4.b $16$ $3.597$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 132.3.g.b \(4\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}-\beta _{7}q^{3}+(-\beta _{7}-\beta _{8})q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(132, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(132, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)