Defining parameters
Level: | \( N \) | \(=\) | \( 132 = 2^{2} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 132.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(132, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 52 | 20 | 32 |
Cusp forms | 44 | 20 | 24 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(132, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
132.3.g.a | $4$ | $3.597$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(-4\) | \(0\) | \(4\) | \(0\) | \(q+(-1+\beta _{1})q^{2}+\beta _{1}q^{3}+(-2-2\beta _{1}+\cdots)q^{4}+\cdots\) |
132.3.g.b | $16$ | $3.597$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(4\) | \(0\) | \(4\) | \(0\) | \(q-\beta _{3}q^{2}-\beta _{7}q^{3}+(-\beta _{7}-\beta _{8})q^{4}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(132, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(132, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)