Properties

Label 132.3.g
Level 132132
Weight 33
Character orbit 132.g
Rep. character χ132(67,)\chi_{132}(67,\cdot)
Character field Q\Q
Dimension 2020
Newform subspaces 22
Sturm bound 7272
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 132=22311 132 = 2^{2} \cdot 3 \cdot 11
Weight: k k == 3 3
Character orbit: [χ][\chi] == 132.g (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 4 4
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 7272
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M3(132,[χ])M_{3}(132, [\chi]).

Total New Old
Modular forms 52 20 32
Cusp forms 44 20 24
Eisenstein series 8 0 8

Trace form

20q4q4+8q512q612q860q916q108q13+68q14+52q1640q17+44q2048q2136q24+220q2536q2664q28+40q29++656q98+O(q100) 20 q - 4 q^{4} + 8 q^{5} - 12 q^{6} - 12 q^{8} - 60 q^{9} - 16 q^{10} - 8 q^{13} + 68 q^{14} + 52 q^{16} - 40 q^{17} + 44 q^{20} - 48 q^{21} - 36 q^{24} + 220 q^{25} - 36 q^{26} - 64 q^{28} + 40 q^{29}+ \cdots + 656 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(132,[χ])S_{3}^{\mathrm{new}}(132, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
132.3.g.a 132.g 4.b 44 3.5973.597 Q(3,11)\Q(\sqrt{-3}, \sqrt{-11}) None 132.3.g.a 4-4 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(1+β1)q2+β1q3+(22β1+)q4+q+(-1+\beta _{1})q^{2}+\beta _{1}q^{3}+(-2-2\beta _{1}+\cdots)q^{4}+\cdots
132.3.g.b 132.g 4.b 1616 3.5973.597 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 132.3.g.b 44 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ3q2β7q3+(β7β8)q4+q-\beta _{3}q^{2}-\beta _{7}q^{3}+(-\beta _{7}-\beta _{8})q^{4}+\cdots

Decomposition of S3old(132,[χ])S_{3}^{\mathrm{old}}(132, [\chi]) into lower level spaces

S3old(132,[χ]) S_{3}^{\mathrm{old}}(132, [\chi]) \simeq S3new(12,[χ])S_{3}^{\mathrm{new}}(12, [\chi])2^{\oplus 2}\oplusS3new(44,[χ])S_{3}^{\mathrm{new}}(44, [\chi])2^{\oplus 2}