Properties

Label 1320.2.bu
Level 13201320
Weight 22
Character orbit 1320.bu
Rep. character χ1320(1033,)\chi_{1320}(1033,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 7272
Newform subspaces 22
Sturm bound 576576
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1320=233511 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1320.bu (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 55 55
Character field: Q(i)\Q(i)
Newform subspaces: 2 2
Sturm bound: 576576
Trace bound: 77

Dimensions

The following table gives the dimensions of various subspaces of M2(1320,[χ])M_{2}(1320, [\chi]).

Total New Old
Modular forms 608 72 536
Cusp forms 544 72 472
Eisenstein series 64 0 64

Trace form

72q8q118q15+48q2316q2516q3112q33+16q3732q47+4q55+32q67+16q7548q7772q81+32q91+48q93+24q97+O(q100) 72 q - 8 q^{11} - 8 q^{15} + 48 q^{23} - 16 q^{25} - 16 q^{31} - 12 q^{33} + 16 q^{37} - 32 q^{47} + 4 q^{55} + 32 q^{67} + 16 q^{75} - 48 q^{77} - 72 q^{81} + 32 q^{91} + 48 q^{93} + 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1320,[χ])S_{2}^{\mathrm{new}}(1320, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1320.2.bu.a 1320.bu 55.e 3636 10.54010.540 None 1320.2.bu.a 00 00 00 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}]
1320.2.bu.b 1320.bu 55.e 3636 10.54010.540 None 1320.2.bu.a 00 00 00 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S2old(1320,[χ])S_{2}^{\mathrm{old}}(1320, [\chi]) into lower level spaces