Properties

Label 1320.2.bw
Level $1320$
Weight $2$
Character orbit 1320.bw
Rep. character $\chi_{1320}(361,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $96$
Newform subspaces $9$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1320.bw (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 9 \)
Sturm bound: \(576\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1320, [\chi])\).

Total New Old
Modular forms 1216 96 1120
Cusp forms 1088 96 992
Eisenstein series 128 0 128

Trace form

\( 96 q - 24 q^{9} + 4 q^{11} + 8 q^{13} - 24 q^{17} + 8 q^{19} - 32 q^{23} - 24 q^{25} - 24 q^{29} + 16 q^{31} + 8 q^{35} + 8 q^{37} + 8 q^{39} + 36 q^{41} + 96 q^{43} + 80 q^{47} + 36 q^{49} - 48 q^{53}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1320, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1320.2.bw.a 1320.bw 11.c $4$ $10.540$ \(\Q(\zeta_{10})\) None 1320.2.bw.a \(0\) \(-1\) \(1\) \(-8\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+\zeta_{10}q^{5}+(-2+2\zeta_{10}+\cdots)q^{7}+\cdots\)
1320.2.bw.b 1320.bw 11.c $8$ $10.540$ 8.0.13140625.1 None 1320.2.bw.b \(0\) \(-2\) \(-2\) \(-5\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{4}q^{3}-\beta _{3}q^{5}+(-1+\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\)
1320.2.bw.c 1320.bw 11.c $8$ $10.540$ 8.0.159390625.1 None 1320.2.bw.c \(0\) \(-2\) \(2\) \(5\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\beta _{2}+\beta _{3}+\beta _{6})q^{3}+\beta _{2}q^{5}+\cdots\)
1320.2.bw.d 1320.bw 11.c $12$ $10.540$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1320.2.bw.d \(0\) \(-3\) \(3\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\beta _{3}-\beta _{4}+\beta _{6})q^{3}+\beta _{6}q^{5}+\cdots\)
1320.2.bw.e 1320.bw 11.c $12$ $10.540$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1320.2.bw.e \(0\) \(3\) \(-3\) \(-5\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{6}q^{3}-\beta _{2}q^{5}+(-1+\beta _{2}+\beta _{9}+\cdots)q^{7}+\cdots\)
1320.2.bw.f 1320.bw 11.c $12$ $10.540$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1320.2.bw.f \(0\) \(3\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{6}q^{3}+(-1+\beta _{6}-\beta _{7}+\beta _{8})q^{5}+\cdots\)
1320.2.bw.g 1320.bw 11.c $12$ $10.540$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1320.2.bw.g \(0\) \(3\) \(3\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{7}q^{3}+\beta _{8}q^{5}+(-\beta _{1}-\beta _{6})q^{7}+\cdots\)
1320.2.bw.h 1320.bw 11.c $12$ $10.540$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1320.2.bw.h \(0\) \(3\) \(3\) \(5\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{7}q^{3}-\beta _{5}q^{5}+(1+\beta _{5}+\beta _{8})q^{7}+\cdots\)
1320.2.bw.i 1320.bw 11.c $16$ $10.540$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1320.2.bw.i \(0\) \(-4\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{2}q^{3}-\beta _{3}q^{5}+\beta _{1}q^{7}-\beta _{6}q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1320, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1320, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(660, [\chi])\)\(^{\oplus 2}\)