Properties

Label 1320.2.dl
Level $1320$
Weight $2$
Character orbit 1320.dl
Rep. character $\chi_{1320}(113,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $576$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1320.dl (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 165 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1320, [\chi])\).

Total New Old
Modular forms 2432 576 1856
Cusp forms 2176 576 1600
Eisenstein series 256 0 256

Trace form

\( 576 q - 8 q^{7} + 12 q^{15} - 24 q^{25} + 12 q^{27} + 16 q^{31} + 12 q^{33} + 16 q^{37} - 32 q^{45} + 24 q^{51} - 28 q^{55} + 48 q^{57} + 16 q^{67} + 36 q^{73} - 12 q^{75} + 32 q^{81} - 16 q^{85} + 64 q^{91}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1320, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1320, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1320, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(660, [\chi])\)\(^{\oplus 2}\)